https://doi.org/10.48047/AFJBS.5.3.2023.01-08

Synthesis and structural determination of piperidinium-5-amino-1, 3, 4thiadiazole-2-thiolate and some of their Schiff bases and study of their biological activity

Noora Abdul Rhman^a, and Mukhlif Mohsin Slaihim^{b*}.

^a College of Education, University of Samarra, Iraq
 ^b College of Applied Sciences, University of Samarra, Iraq
 *Corresponding author: <u>mukhlif.m.s@uosamarra.edu.iq</u>

Abstract

The study included the preparation of a series of new five-member rings represented by Schiff bases, which started with the salt of piperidinium-5amino-1, 3, 4-thiadiazole-2-thiolate as their starting material. The new Schiff bases of piperidinium salts (S1–S10) were synthesized in one pot via compound (SP) and corresponding aldehyde in the presence of piperidine. The melting points of final products were uncorrected and these molecules were characterized by infrared spectroscopy and nuclear magnetic resonance spectroscopy. The biological activity of the prepared compounds was evaluated against four types of bacteria; (*Pseudomonas aeruginosa* and *klebcellacoccus*) as gram-negative and (*Staphylococcus Aureus* and *Streptococcus*) as Gram-positive bacteria.

Keywords: Piperidinium salts, 2-amino-1, 3, 4-thiadiazole-5-thiol, Schiff bases, biological activity.

© 2023 Noora Abdul Rhmand, This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made

Article Info Volume 5, Issue 3, July 2023 Received:18 May 2023 Accepted :15 June 2023 Published: 12 July 2023 doi:10.48047/AFJBS.5.3.2023.21-31

1. Introduction

Schiff bases are a large class of organic molecules distinguished by the presence of a double bond between carbon and nitrogen atoms. Many of their compounds have a range of alkyl or aryl substituents that could be created by a number of techniques. As a result, different uses of this sort of chemical achieve different goals. This sort of organic substance may be synthesized in the laboratory and is found in nature. Schiff bases have long been an inspiration to many chemists and biochemists (Raczuk et al., 2022). Scientists have employed Schiff base in a wide range of medical applications such as antibacterial (Hwang et al., 2020; Panneerselvam et al., 2009), antifungal (Rai, & Kumar, 2013), Antitumor (Ali et al., 2020), Antiviral (Illán-Cabeza et al. 2008), anti-HIV (Kumar et al., 2010), Herbicidal (Roy et al., 2020), anticancer (Khairuddean et al., 2020), and anti-influenza virus (Illán-Cabeza et al., 2013). Several Schiff bases for the 2-amino-1, 3, 4-thiadiazole ring, including treatment of the ring with vanillin to prepare the corresponding Schiff base, were prepared by Ameen and Qasir (Ameen et al., 2012).

Since not many of the piperidinium salts with Schiff base units have been reported that indicate pharmacological properties as antibacterial agents, the research work focused on the new Schiff bases preparation of the salt of piperidinium-5-amino-1, 3, 4-thiadiazole-2-thiolate. The work on these 1,3,4-thiadiazole ring derivatives focused on four types of bacteria; (*Pseudomonas aeruginosa and klebcellacoccus*) as gram-negative and (*Staphylococcus Aureus and Streptococcus*) as Gram-positive bacteria.

2. Experimental

2.1. Chemicals

The chemicals and reagents utilized in this study of all the synthesized compounds can be as follows: Thiosemicarbazide, (ALPHA Chemika, India); Piperidine, (BDH, England); carbon disulfide CS_{2} (ALPHA Chemika, India); absolute ethanol; 4bromobenzaldehyde; 2-bromobenzaldehyde,(Fluka, brand): 4-Hydroxybenzaldehyde (Sigma, brand); 4-hydroxy-3-methoxy benzaldehyde,(BDH, England); 2,4-dihydroxy benzaldehyde,(Sigma, brand); 4-methyl benzaldehyde,(Fluka, brand); 4-nitro benzaldehyde;4-Dimethylamino benzaldehyde; 4-chloro benzaldehyde; Dimethyl sulfoxide-d6 (DMSO), (Sigma-Aldrich, USA); TLC silica gel 60 F254, aluminum sheet, 20cm x 20cm (Merck, Germany).

2.2. Instruments

All the devices or instruments utilized for the determination structure of synthesized compounds are located at the College of Applied Sciences, University of Samarra; except for a Bruker Avance (400 MHz). The nuclear magnetic resonance, (¹H-NMR) spectra were measured at Basra University, College of Education, Department of Chemistry, utilizing a Bruker Avance (400 MHz) and DMSO- d_6 solvent. Infrared spectra were recorded utilizing a Fourier Transform Infrared Spectrophotometer/FTIR-8400S device supplied by Shimadzu

Japanese Company: Samples were prepared as (KBr) discs. Mass spectra were recorded utilizing a GC-MS-QP 2010 Ultra Shimadzu.

2.3 Biological assay

2.3.1 Compounds and cells

The DMSO solvent was utilized to dissolve all test compounds at the first concentration of 0.032 mg * mL⁻¹ and then serially diluted for utilization in a culture medium. Four types of pathogenic bacteria were used: Two are gram-negative (Gr-ve): *Pneumonia klebsiella*, and *Pseudomonas aeruginous*. In addition, two are gram-positive (Gr+ve), which are *Staphylococcus aureus*, and *Streptococcus mutans*. The four bacterial species and the tests conducted on them were in the Microbiology Laboratory/Pathological Analysis Department/College of Applied Sciences/ University of Samarra.

2.3.2 Antibacterial assay

Test solutions for the compounds of (S1-S10) were prepared by utilizing the organic solvent DMSO and several different concentrations were prepared from it, (0.032, 0.016, 0.008, 0.004, 0.002, 0.001, 0.0005) respectively, for each compound and they were applied to the four aforementioned bacteria. The seven concentrations had distributed on two plates by the agar well diffusion method and seven holes had made with a diameter of 5 mm in the center of the agar at the circumference of each plate. Then, in each hole, 50-70 (μ L) of the solutions had injected in different concentrations. A micro pipet utilization for injection of each hole and recording results have been done at a temperature of 37 °C after 18-24 hours.

2.4. Synthesis method

2.4.1 The reported method by (Yusuf et al., 2008), was followed for the synthesis of compound PS.

2.4.2 General procedure for the preparation of Schiff base compounds (S1-S10).

A new series of Schiff bases (S1-S10) was synthesized by mixing in one pot, an equimolar of compounds (0.001 mol) of one of the aromatic aldehyde derivatives, PS and piperidine, respectively, in (50 ml) of absolute ethanol in a round bottom flask. The contents of the reaction were refluxed with stirring for 6 hours. The mixture is concentrated and let to cool slowly. The precipitate formed was filtered, dried, and purified by appropriate methods.

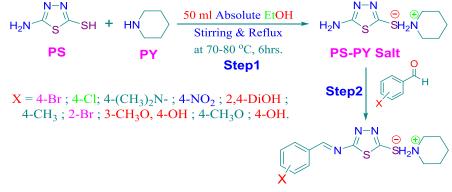

Chemical Symbol	M. w	°C M.P	Color	Yield%
S1	385.3	184-186	Orange	52.0
S2	340.9	168-170	Yellow	70.5
S 3	349	228-230	Orange	43.5
S4	351.4	180-182	Somber Orange	14.3

Table 1: physical properties of new Schiff base series (S1-S10).

S 5	338.4	158-160	Yellow	77.33
S6	320.5	172-174	Brawn	53.13
S7	385.3	155-157	Vivid Orange	38.9
S 8	352.10	Sticky	Chocolate	44.7
S 9	336.5	145-143	Yellow	66.9
S10	322.4	Sticky	Mustard	90.4

3. Results and Discussion

Slaihim et al., (2019), described a new method for synthesizing a new series of Schiff bases. In this work, we created a new series of Schiff bases (S1-S10) by refluxing a one-pot reaction of (PS-PY) salt in 100% ethanol and a few drops of piperidine before adding a series of substituted benzaldehyde (Scheme 1).

Scheme 1: Synthesis pathway of piperidinium-5-amino-1, 3, 4-thiadiazole-2-thiolate derivatives with Schiff base moiety.

A new Schiff base series (S1-S10) was successfully synthesized and structurally determined. The next five tables, 1, 2, 3, 4, and 5, include the summaries of physical properties, ¹H-NMR, IR, GC-MS, and MICs of the new series (S1-S10) data, respectively. The Schiff base unit is confirmed by some techniques of organic identification such as IR, ¹H-NMR, and ¹³C-NMR spectroscopy. The -NH₂ and carbonyl groups were absent in the IR spectra, but the absorption band N=CH (of the imine group) was present. The Schiff base, or imine (-N=CH-), can be observed in the ¹H NMR spectra as a singlet at 9.60–10.30 ppm and a peak at 152.30-164.20 ppm in the ¹³CNMR spectra. This group (-N=CH-) is an important group due to its flexibility and structural similarities with SAR (the structure-activity relationship). All these properties relate to the mechanism and potential of a promising antibacterial. The biological activity of all prepared Schiff base derivatives is evaluated against four types of Gram-positive and Gram-negative bacteria; the four types of bacteria used in the current study are Staphylococcus aureus, Streptococcus mutans, Klebsiella pneumoniae, and Pseudomonas aeruginosa. All the new compounds tested showed inhibitory activity against one or more of the four bacterial species selected in this

study; this activity ranged from moderate to strong. As the study showed, compound S1 did not show any inhibitory activity at all the concentrations used. As for the rest of the tested materials, they showed a clear and, for the most part, medium inhibitory effect, and the values of the minimum inhibitory concentration (MIC), according to the results, were as follows: Compound S2 showed an inhibitory effect against Staphylococcus aureus with effect diameters of 15 mm at the lowest concentration used in the study (0.0005 mg/ml). As for the compounds S9, S8, S4, and S10, they showed an inhibitory effect against Streptococcus mutans with an effective diameter of 15–20 mm, respectively.

Structure/Cod	Chemical Shift (δ) ppm	Signal Features	No. of Protons	Type of Protons
	8.42	S	1H	(CH=N-)imine
	7.80	d, <i>J</i> = 8.8 Hz	2H	aromatic
	6.81	d, <i>J</i> = 8.8 Hz	2H	aromatic
L1/S3	3.07	S	6H	-N(CH ₃) ₂
	2.97	t, <i>J</i> = 5.7 Hz	4H	piperidiniun
	1.65	p, <i>J</i> = 5.5 Hz	4H	piperidiniun
	1.53	p, J = 5.6 Hz	2H	piperidiniun
	8.50	S	1H	(CH=N-)imine
	8.04	d, <i>J</i> =8.1 Hz	2H	aromatic
L2/S4	8.29	d, <i>J</i> =8.2 Hz	2H	aromatic
L2/34	3.02	t, <i>J</i> =5.51 Hz	4 H	piperidiniun
	1.60- 1.62	m	4H	piperidiniun
	1.35-1.37	m	2H	piperidiniun
	8.53	S	1H	4-OH-Ph
	8.25	S	1H	(CH=N-)imine
	7.86	d, <i>J</i> = 8.7 Hz	1H	aromatic
	7.58	S	1H	aromatic
L3/S5	6.85	d, <i>J</i> = 8.5 Hz	1H	aromatic
	3.57	S	1H	2-OH-Ph
	2.99	t, <i>J</i> = 4.5Hz	4H	piperidiniun
	1.67	р, <i>J</i> = 5.6 Н	4H	piperidiniun
	1.55	p, J = 5.5Hz	2H	piperidiniun
	8.74	S	1H	(CH=N-)imine
	7.93	dd, <i>J</i> = 8.0 Hz	1H	aromatic
L4/S7	7.86	d, <i>J</i> = 8.7 Hz	1H	aromatic
	7.81	t, <i>J</i> = 8.0 Hz	1H	aromatic
	7.70	dd, <i>J</i> = 8.0 Hz	1H	aromatic

Table 2: ¹H-NMR characteristic data of compounds L1-L6

iniun
iniun
iniun
imine
atic
atic
H ₃
iniun
iniun
iniun
imine
atic
atic
iniun
iniun
iniun

Table 3: IR (v, cm⁻¹) characteristic bands of (S1–S10) series.

No.	ν(C-H) Ar	ν (C-H)Al	ν (CH=N)	ν (C=C) Ar	Others
S1	3016	2935	1610	1589,1558	C-Br 698
S2	3118	2951	1645	1560,1645	C-Cl 784
S3	3082	2893	1600	1533,1508	C-CH ₃ 1369
S4	3020	2900	1601	1521,1562	C-NO ₂ 1348
S5	3132	2926	1604	1577,1604	3414-3650
S6	3124	2929	1610	1485,1508	C-CH ₃ 1363
S7	3101	2927 4	1608	1558,1508	C-Br 669
S8	3020	2947	1668	1456,1516	О-Н 3385
S9	3110	2947	1668	1516,1560	О-Н 3590.07
					O -CH₃1456
S10	3022.	2927	1600	1456,1517	О-Н 3590

Product s NO .	Chemical formula	Exact Mass	Mass spectrum m\z (relative intensity) of fragments				
S2	C ₁₄ H ₁₅ CLN ₄ S 2	340	341[M+,24 %]	111[M+,26%]	84[M+,73%]	57[M+,100%]	
S5	C ₁₃ H ₁₆ N ₄ O ₃ S 2	338	339[M+20 %]	248[M+,11%]	130[M+20%]	73[M+,100%]	
S6	$C_{15}H_{20}N_4S_2$	320	321[M+,2 %]	285[M+,5%]	222[M+,6%]	102[M+,100 %]	
S9	$C_{15}H_{20}N_4OS_2$	336	337[M+,10 %]	294[M+15%]	224 [M+,17%]	117 [M+,100%]	
S10	$C_{14}H_{18}N_4OS_2$	322	323[M+,22 %]	264 [M+,2%]	235 [M+,20%]	207[M+,100 %]	
TH	$S_2H_3N_3S_2$	131	132 [M+,20%]	101[M + ,4 6%]	73[M+,100%]		

Table 4: Molecular weight ions with a base peak in the mass spectra

Table 5: MICs of the new series (S1-S10) against gram-negative and gram-positive bacterial

 strains

COMPOUND: (S2)	s.aurus	Strepto	Klepcella	Psedu
				monas
0.032	26	22	26	25
0.016	30.3	21	25	24
0.008	27	21	23	18
0.004	22	20	22	24
0.002	24	19	0	22
0.001	22	18	0	12
0.0005	20	18	0	16
COMPOUND: (S3)				
0.032	0	18	23	18
0.016	0	18	20	15
0.008	0	17	18	14
0.004	0	16	15	11
0.002	0	0	15	0
0.001	0	0	15	0
0.0005	0	0	14	0

COMPOUND: (S4).				
0.032	29	20	14	16
0.016	24	20	13	20
0.008	21	15	14	25
0.004	18	16	0	29
0.002	15	16	0	0
0.001	14	16	0	0
0.0005	13	17	0	0
COMPOUND: (S5)				
0.032	19	25	20	20
0.016	14	30	20	15
0.008	15	25	13	13
0.004	13	16	12	11
0.002	15	15	10	0
0.001	15	0	0	0
0.0005	11	0	0	0
COMPOUND: (S6)				
0.032	25	30	21	15
0.016	13	27	23	18
0.008	20	24	20	16
0.004	20	23	12	11
0.002	17	20	11	18
0.001	0	13	0	16
0.0005	0	0	0	
COMPOUND: (S7)	s.aureus	Strpto	Klepcella	Klebsiella
0.032	25	22	16	17
0.016	20	22	16	13
0.008	20	19	11	13
0.004	22	19	0	12
0.002	15	17	0	0
0.001	14	12	0	0
0.0005	12	0	0	0
COMPOUND: (S8)				
0.032	25.5	21	0	18
0.016	15	20	0	15
0.008	15	17	0	14
0.004	15	17	0	11
0.002	0	17	0	0

0.001	0	17	0	0
0.0005	0	15	0	0
COMPOUND: (S9)				
0.032	20	35	18	20
0.016	19	35	18	15
0.008	17	31	16	15
0.004	0	25	14	11
0.002	15	22	0	14
0.001	0	19	0	11
0.0005	0	18	0	11
COMPOUND: (S10)				
0.032	23	28	16	20
0.016	18	27	13	11
0.008	17	24	11	0
0.004	14	20	10	0
0.002	11	17	0	0
0.001	0	17	0	0
0.0005	0	15	0	0

4. Conclusion

The present study included the preparation, characterization, and study of the biological activity of all new Schiff bases (S1–S10). It also included the preparation of new types of organic salts bearing in their composition different types of amines with aliphatic ring structures: 1-piperidinium-5-amino-4,3,1-thiadiazole-2-thiolate (piperidine-1-ium 5-salt).

Acknowledgment

The authors would mind thanking the college of Applied Sciences, Samarra University /Iraq for providing the lab facilities.

REFERENCES

- Ali, S. H., Abdulhussein, H. S., & Abd Alredha, H. M. (2020). Antibiotic activity of new species of Schiff base metal complexes. Periodico Tche Quimica (Online), 17(35), 837-859.
- Ameen, H. A., & Qasir, A. J. (2012). Synthesis and preliminary antimicrobial study of 2amino-5-mercapto-1, 3, 4-thiadiazole derivatives. Iraqi Journal of Pharmaceutical Sciences (P-ISSN: 1683-3597, E-ISSN: 2521-3512), 21(1), 98-104.
- Hwang, S., Ryu, J. Y., Jung, S. H., Park, H. R., & Lee, J. (2020). Cobalt complexes containing salen-type pyridoxal ligand and DMSO for cycloaddition of carbon dioxide to propylene oxide. Polyhedron, 178, 114353.

- Illán-Cabeza NA, Hueso-Urena F, Moreno-Carretero MN, Martínez-Martos JM, Ramírez-Expósito MJ. J. Inorgan. Biochem. (2008) Synthesis, characterization and antiproliferative activity of metal complexes with the Schiff base derived from the condensation 1: 2 of 2, 6-diformyl-4-methylphenol and 5, 6-diamino-1, 3dimethyluracil.; 102 (4): 647-655.
- Illán-Cabeza, N. A., García-García, A. R., Martínez-Martos, J. M., Ramírez-Expósito, M. J., & Moreno-Carretero, M. N. (2013). Antiproliferative effects of palladium (II) complexes of 5-nitrosopyrimidines and interactions with the proteolytic regulatory enzymes of the renin–angiotensin system in tumoral brain cells. Journal of Inorganic Biochemistry, 126, 118-127.
- Khairuddean, M.; Slaihim, M. M.; Alidmat, M. M.; Al-Suede, Fouad. S. R.; Khadeer Ahamed, M. B.; Shah Abdul Majid, A. M., 2020. SYNTHESIS, CHARACTERISATION OF SOME NEW SCHIFF BASE FOR THE PIPERIDINIUM 4-AMINO-5-SUBSTITUTED-4H-1,2,4-TRIAZOLE-3-THIOLATE, AND THEIR IN-VITRO ANTICANCER ACTIVITIES. International Journal of Natural and Human Sciences, 1, (1), 48–58.
- Kumar, K. S., Ganguly, S., Veerasamy, R., & De Clercq, E. (2010). Synthesis, antiviral activity, and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4 (3) H-ones. European journal of medicinal chemistry, 45(11), 5474-5479.
- Panneerselvam, P., Rather, B. A., Reddy, D. R. S., & Kumar, N. R. (2009). Synthesis and antimicrobial screening of some Schiff bases of 3-amino-6, 8-dibromo-2phenylquinazolin-4 (3H)-ones. European Journal of Medicinal Chemistry, 44(5), 2328-2333.
- Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J., & Madaj, J. (2022). Different Schiff Bases—Structure, Importance, and Classification. Molecules, 27(3), 787.

Rai, B. K., & Kumar, A. (2013). Synthesis, characterization, and biocidal activity of some Schiff base and its metal complexes of Co (II), Cu (II), and Ni (II). Oriental Journal of Chemistry, 29(3), 1187.

- Roy, S., Dutta, T., Drew, M. G., & Chattopadhyay, S. (2020). Phenoxazinone synthase mimicking activity of a dinuclear copper (II) complex with a half salen type Schiff base ligand. Polyhedron, 178, 114311.
- Slaihim, M. M.; Al-Suede, Fouad. S. R.; Khairuddean, M.; Khadeer Ahamed, M. B.; Shah Abdul Majid, A. M., 2019. Synthesis, characterisation of new derivatives with mono ring system of 1,2,4-triazole scaffold and their anticancer activities. Journal of Molecular Structure, 1196C, 78-87.
- Yusuf, M., Khan, R. A., & Ahmed, B. (2008). Syntheses and anti-depressant activity of 5amino-1, 3, 4-thiadiazole-2-thiol imines and thiobenzyl derivatives. Bioorganic & medicinal chemistry, 16(17), 8029-8034.

Cite this article as: Noor Ghazi saab (2023). Inter-canine distance for gender determination in adolescence Noor Ghazi saab, African Journal of Biological Sciences. 5(3),21-27. doi: 10.33472/AFJBS.5.3.2023.21-31