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I. INTRODUCTION 

Software fault prediction is the process of estimating errors in a software product during 

and after development, using previously defined metrics or historical defect data gathered from 

previous similar projects. Early in the development process, or even before starting a project, 

the ability to estimate software faults can be invaluable in minimising software development 

time and effort, where accurate SFP can reduce the efforts required to detect software errors 

throughout the software life cycle and minimise the number of modules developed in each 

activity.Defect prediction is a method of developing models that are used early in the process 

to detect defective systems such as units or classes. This can be accomplished by categorising 

the modules as defect-prone or not. To identify the classification module, various methods are 

used, the most common of which are support vector classifiers (SVC), random forests, and 

naive Bayes, decision trees (DT), and neural networks (NN). The detected defect prone 

modules are given high priority during the progress testing phases, while the non-defect prone 
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modules are examined as time and budget allow. The classification feature, known as the 

relationship between the attributes and the training dataset class label, is established on the 

classifier method and examined using formulae for target categorization. These rules will also 

be required in the future to define dataset class labels. Thus, the unknown datasets can be 

categorized using the classification patterns and a classifier.  

As a result of massive deployment of software, defining software defects, finding the 

defect, and identifying it is a repetitive task for researchers. The primary goal of categorising 

the software dataset as a model for bug prediction into defective and non-defective datasets is 

to reduce the number of bugs in the dataset. According to this method, the input software 

dataset is given to the classifier where the user knows the actual class values. 

The following steps is the way the paper is structured. In Section II, a detailed description 

of existing techniques in the field of Software Defect Prediction is furnished. The proposed 

framework for software prediction with various datasets is discussed in Section III. Section IV 

presents the experimental results. Finally, section V brings the paper to a conclusion. 

II. RELATED WORK 

This section provides a brief overview of existing techniques in the field of SDP. 

Several researchers have used ML techniques for SDP during the early stages of software 

development. To solve the Software Fault Prediction (SFP) problem, Kassaymeh S et al [1] 

proposed the Salp Swarm Algorithm (SSA) combined with a Back Propagation Neural 

Network (BPNN). The SFP problem is a well-known software engineering problem that is 

concerned with anticipating software defects that are likely to appear during or after a software 

project. In order to evaluate their method, they used six performance measures (AUC, 

confusion matrix, sensitivity, specificity, accuracy, and ER). One limitation identified in their 

research is the high computational cost of most data sets. Therefore, a new strategy to optimize 

the proposed algorithm in terms of computational cost can be developed in future. 

Mangla M et al [2] used a sequential ensemble model to formalise the SFP method. The 

proposed model is tested using eight datasets from well-known repositories. The performance 

of their sequential ensemble model is evaluated using various error metrics, including average 

absolute error, average relative error, and prediction. Another error metric, root mean squared 

error (RMSE), is not used for performance analysis because it assigns larger weights to larger 

errors because it squares the errors before averaging out, and thus it is more suitable for 

applications focusing on large errors. As a result, the RMSE should be more useful when large 

errors are especially undesirable. The results of their model were encouraging, and they 

supported the use of ensemble modelling for SFP. 

DePaaS—Defect Prediction as a Service—a cloud-based, multi-model SDP framework 

was proposed by Pandit M et al [3]. It is designed to be a global, unified platform that serves 

both researchers who create SDP models and software industry practitioners who use the defect 

prediction services provided by these SDP models. The author described the DePaaS usage 

context, five types of users, and five initial use cases, as well as a layered, modular architecture. 

It defined the structure and behaviour of architectural elements. It defined the structure and 

behaviour of architectural elements. 
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Odejide BJ et al [4] used sampling methods on software defect datasets to alleviate the 

latent class imbalance problem by balancing the number of minority and majority class 

instances present, resulting in new defect datasets that did not have a class imbalance problem. 

On defect datasets from NASA and PROMISE repositories, three data oversampling methods 

(SMOTE, ADASYN, and ROS) and two data under sampling methods (RUS and NM) are 

used, while DT and RF classifiers are used on the original and newly developed software defect 

datasets. The author demonstrated that the data sampling methods investigated can overcome 

the class imbalance problem in SDP datasets. Furthermore, in the majority of cases, the data 

sampling methods improved the prediction performances of the tested prediction models. In 

terms of data sampling effectiveness, the examined oversampling approaches had a greater 

(positive) influence on the prediction models than their under sampling counterparts. 

Balogun AO et al [5] addressed the SDP concepts and the class imbalance problem as 

described in order to develop a successful SDP model. On software defect datasets, data 

sampling methods are used to alleviate the latent class imbalance problem by levelling the 

number of minority and majority class instances observed, resulting in new defect datasets with 

no class imbalance problem. On defect datasets from the NASA repository, three data 

oversampling methods (SMOTE, ADASYN, and ROS) and two data under sampling methods 

(RUS and NM) are used, while ensemble (Bagging and Boosting) NB and DT classifiers are 

used on the original and newly developed software defect datasets. 

For defect prediction, Mohammad UG et al [6] used machine learning techniques such 

as RF and SVM, as well as ensemble classifiers such as bagging, Adaboost, voting, and 

stacking. To evaluate the performance of an optimization model, key parameters such as 

precision, recall, and f1-measure are used. After addressing the imbalanced dataset issue, the 

proposed model improves the performance of all algorithms. 

Wahono RS et al [7] presented a framework for comparing the performance of 

classification algorithms in the prediction of software defects. The framework is made up of 

nine NASA MDP datasets, ten classification algorithms, a ten fold cross validation model, and 

an AUC accuracy indicator. Friedman and Nemenyi are used to test the significance of model 

AUC differences. The experimental results show that the LR outperforms the others in the 

majority of NASA MDP datasets. NB, NN, SVM, and k* all perform well, with no statistically 

significant difference between them. Decision tree-based classifiers, as well as LDA and k-

NN, tend to underperform. 

Tsunoda M et al [8] discussed how feature reduction techniques can improve the 

predictive accuracy of software defect prediction models. They used the bandit algorithm (BA) 

to select a suitable feature reduction technique for defect prediction in this work. The Bandit 

Algorithm dynamically chooses the best technique from among candidates based on a 

comparison of test and prediction results on tested modules. As a result, it is expected that BA 

will prevent accuracy degradation. BANP had nearly the same or higher accuracy than existing 

approaches. That is, BANP could reduce the effort required to evaluate reduction techniques 

while avoiding the degradation of prediction accuracy. Their approaches suggested here can 

assist in selecting a suitable feature reduction technique that can improve the prediction model's 

overall accuracy. 

Feng S et al [9] discovered in SDP that defect-containing datasets are normally 

imbalanced, a problem known as the class imbalance problem. Oversampling techniques are 
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commonly used to solve the problem. To address these issues, the Complexity-based 

Oversampling Technique (COSTE) was proposed as a novel oversampling technique. COSTE 

uses the complexity of instances rather than the distance between them to aid in the selection 

of those that will be used to generate synthetic instances, etc. 

Tang S et al [10] proposed the transfer-learning algorithm TSboostDF for solving the 

CPDP problem. To overcome the shortcomings of the traditional CPDP algorithms, 

TSboostDF combines the BLS sampling method, which is based on sample weight, with the 

transfer-learning method. Their algorithm outperformed other transfer-learning-based CPDP 

algorithms in terms of performance. The effects of multi-source transfer learning on CPDP 

merit further research by integrating information from multiple source projects for knowledge 

transfer. This strategy will assist classifiers in improving their performance on CPDP problems. 

Pandey SK et al [11] ran 864 experiments across three public datasets, analysing the 

noise endure for well-known SDP models. They had manually inserted noise ranging from 0% 

to 80%. They used four baseline SDP methods and trained them on noisy datasets. To avoid 

the problem of class imbalance, they used random sampling. The author proposed a method 

that can tolerate maximum noise while still outperforming baseline methods, and he compared 

the performance without using sampling methods. They discovered that the proposed approach 

outperforms baseline technologies with noisy instances and imbalanced data. 

The preceding discussion demonstrated various methodologies used for defect 

prediction in the balanced dataset. Adaboost priority-based fuzzy SVM is used in our proposed 

work to predict defects in various data sets. The section that follows elaborates on the proposed 

methodology and the results obtained for performance measures. 

III. METHODOLOGY 

Software defect prediction (SDP) is a critical tool for assessing software quality and 

lowering development costs. Data collected during the software lifecycle can be used to 

forecast software defects. Many SDP models have been proposed recently; however, their 

performance was not always ideal. In this study, defected data sets are classified as defective 

or non-defective using Adaboost Priority based Fuzzy SVM. 

 

Fig 3.1 Flow Chart for Proposed Methodology 



Page 482 of 10 
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487 

Fig 3.1 shows the flow of the proposed framework. It depicts that defected data set is taken 

as input. The data set having defections are predicted by Adaboost priority based fuzzy SVM 

technique. If the error count is greater than zero the data set is defective otherwise non 

defective. 

A. Data Set Pre Processing  

The acquired data sets were pre-processed to prepare them for subsequent machine 

learning approaches. 

SMOTE (Synthetic Minority Over-sampling Technique) is a method of sampling the 

minority population by generating data points synthetically. The number of nearest neighbours 

chosen at random corresponds to the amount of sampling required. To begin, the difference 

between the sample under consideration and its corresponding nearest neighbours is calculated, 

multiplied by a random number between 0 and 1, and finally added to the original vector under 

consideration. It is important to note, however, that SMOTE cannot be applied to the entire 

data set and then split into testing and training sets. 

If the data is first oversampled and then split into test and train sets, the results will be 

misleading because there is a high chance that the same data will be present in both sets. To 

avoid this, the data is first split into test and train sets, and the SMOTE is applied over the 

training data set for proper testing set validation. 

B. Adaboost Priority Based Fuzzy SVM  

Adaboost is a popular boosting algorithm that gradually increases the weights of the 

classifier's classification error weights. Create a new classifier in each iteration to overcome 

the failure of the old classifier, and then link the newly created classifier to the voting process. 

As a result of the Adaboost essence, the weak classifier is promoted to the strong classifier, 

which is an adaptive lifting technique. As a result, as the number of training data increases, so 

does the classification error rate. The Adaboost algorithm employs the following steps. Takes 

the training dataset and all training samples to learn the first weak learning classifier, and also 

provides the maximum number of iterations (M). The incorrect classification of sample and 

other data is combined to represent the new training dataset, while the sample weight is 

adjusted. Repeat these process M times. The new training data samples are generated for the 

next iteration learning classifier, which is based on a new weight, and finally, the strong 

classifier with improved classification effect is generated. 

C. Performance Evaluation  

One of the most important basic measures for evaluating the effectiveness of predictive 

models is classification accuracy, also known as the right classification rate. It is used to 

compute the proportion of correctly classified cases compared to total occurrences. 

Precision is another metric that is calculated by dividing the number of instances 

correctly classified as faulty (TP) by the total number of instances classified as defective (TP 

+ FP). Furthermore, recall quantifies the proportion of defective cases correctly classified (TP) 

to the total number of faulty instances (TP + FN). The F-score is a harmonic mean of accuracy 
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and recall that has been used in numerous studies. By balancing TPR and FPR, ROC-AUC 

calculates the area under the receiver operating characteristic (ROC) curve. 

Accuracy =TP +TN/TP + TN + FP + FN   (1) 

Precision = TP /TP + FP     (2) 

Recall = TP /TP + FN     (3) 

F-Score =2 * Precision * Recall/Precision + Recall  (4) 

G-measure is another measure used in software defect prediction. It is defined as a harmonic 

mean of recall and specificity. Probability of false alarm (PF) is the ratio of clean instances 

wrongly classified as defective (FP) among the total clean instances (FP + TN). 

IV. RESULT AND DISCUSSION 

The following table shows the accuracy for the machine learning algorithm used in the 

dataset. 

TABLE I ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – CM1 

Algorithm name Accuracy 

SVM 95 

SMOTE SVM 96 

SMOTE Fuzzy SVM 97 

SMOTE Adoptive Fuzzy SVM 98.2 

 

 

 

 
 

Fig 4.1Accuracy for the used ML algorithms in the dataset – CM1 
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The following table shows the accuracy values obtained for various machine learning 

algorithms used and for the dataset KC1. 

TABLE II ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – KC1 

Algorithm name Accuracy 

SVM 91 

SMOTE SVM 93.5 

SMOTE Fuzzy SVM 95 

SMOTE Adoptive Fuzzy SVM 97 

 

 
 

Fig 4.2Accuracy for the used ML algorithms in the dataset – KC1 
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Fig 4.3Accuracy for the used ML algorithms in the dataset – KC2 

 

TABLE IVACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – PC1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 4.4Accuracy for the used ML algorithms in the dataset – PC1 

 

SVM SMOTE SVM
SMOTE Fuzzy

SVM

SMOTE
Adoptive

Fuzzy SVM

Accuracy 90 92 94.2 96

86

88

90

92

94

96

98

A
cc

u
ra

cy
(%

)

Dataset -KC2

SVM SMOTE SVM
SMOTE Fuzzy

SVM

SMOTE
Adoptive

Fuzzy SVM

Accuracy 94.8 95.6 96.2 98

93

94

95

96

97

98

99

A
cc

u
ra

cy
(%

)

Dataset-PC1

Algorithm name  Accuracy  
 

SVM  
94.8 

SMOTE SVM 95.6 

SMOTE Fuzzy SVM 96.2 

SMOTE Adoptive Fuzzy SVM 98 



Page 486 of 10 
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487 

 From the above graph, proposed SMOTE adaptive fuzzy SVM algorithm yields 98% 

accuracy for the dataset we used PC1. 

V. CONCLUSION 

Software defect prediction is a technique that uses data to create a prediction model that 

predicts future software faults. Several approaches have been proposed that make use of 

various datasets, metrics, and performance measures. This paper investigated the use of 

machine learning algorithms in the prediction of software bugs. The following machine 

learning techniques were used: NB, Random Forest, and Priority based Fuzzy SVM. Three real 

testing/debugging datasets are used in the evaluation process. The accuracy, precision, recall, 

F-measure, and RMSE measures are used to collect experimental results. The results show that 

ML techniques are effective methods for predicting future software bugs. The comparison 

results revealed that the proposed classifier outperformed the others. 
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