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Abstract: Biological data such as genomic, transcriptomics, proteomic, metabolomics, or 

clinical data are used for analyzing the patterns in breast cancer. Early diagnosis and 

identification are vital in precise therapy for the adverse breast cancer effects. Recent 

studies have focused on utilizing Deep Learning (DL) algorithms like deep convolutional 

neural Networks (CNN) architectures for breast cancer classification tasks with high 

efficiency from gene expression profiles. However, the biological gene expression 

datasets have smaller sample sizes but high dimensionality problems, which reduce the 

suitability of the DL methods. Similarly, the problem of model complexity in CNN-based 

methods is also challenging. Therefore, this paper presents a lightweight hybrid classifier-

based breast cancer detection and classification model called Convolutional Support 

Vector Machine (CSVM), developed by integrating the benefits of the CNN architecture 

with the Hybrid Kernel-based SVM classifier. This hybridized CSVM classifier model is 

formulated by replacing the softmax classifier in the heterogeneous CNN architecture 

with the SVMs to handle the high dimensional features of gene expression datasets 

efficiently. After pre-processing the data, they are initially clustered using K-means 

Clustering to improve the learning of patterns and relationships between the disease 

features. Then, the features are learned using the convolutional layer and the final 

classification by SVMs. This proposed CSVM model parameters are trained together to 

improve the sequence-level feature learning. Experimented on biological datasets related 

to breast cancer gene (BRCA) sourced from Mendeley data, the efficiency of the proposed 

CSVM-based model is validated by overcoming the model complexity issues and 

achieved 97.89%, 96.85%, and 98.11% accuracies for breast cancer detection with 

minimized processing time.  

Keywords: Biological Data, Gene expression analysis, Breast cancer, Convolutional 

Neural Networks, Convolutional Support Vector Machine, K-means Clustering, 

Mendeley Data. 
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1. INTRODUCTION 

Biological data analysis involves the application of various computational and 

statistical techniques to interpret large-scale biological datasets with the goal of identifying 

patterns, biomarkers, or signatures associated with breast cancer [1]. Initially, the biological 

data, such as genomic and clinical data are collected. These biological data are obtained from 

patient samples, and cell lines. These raw datasets are cleaned and pre-processed by applying 

quality control, data imputation, batch correction and denoising methods to remove noise, 

correct errors, and normalize the data for ensuring consistency. Then, the relevant features 

from these pre-processed biological data are extracted and the dimensionality is reduced 

using suitable statistical or feature selection techniques. Finally, the statistical tests or ML 

algorithms are used to analyze the processed data for finding the potential biomarkers, 

genetic variants, gene expression signatures, or other molecular features associated with 

disease presence, progression, or response to treatment. These patterns are used to exactly 

identify the stage of the disease and then initiate the treatment process. Breast cancer is a 

tumour form of cancer caused due to abnormal lumps in tissues that are characterized by 

complicated metabolic and immune system abnormality, which involves complex interactions 

between various biological processes in the breast tissues. Mostly, women in the age of 40-

plus category are often affected by breast cancer. In 2020, a total of 19.3 million cancer cases 

were diagnosed worldwide, with breast cancer accounting for 11.7% of these cases. The most 

common symptoms are the presence of breast lump, breast pain or discomfort, differences in 

the size of the breast or shape, skin changes colour of the breast, breast and under-arm 

swelling, and abnormal nipple discharge. Sometimes, itching and burning sensations may 

also be experienced in the breast or at the site of the lump.  

One of the main reasons for the increased number of breast cancer patients in recent 

years is the significant lifestyle changes with the consumption of highly saturated fats taking 

over healthy food habits. Menstruation problems and obesity, especially after menopause, 

lactation problems in feeding mothers, family history and stress can also be major factors 

contributing to breast cancer. It is often identified by self-examinations or physical 

examinations by physicians followed by biopsy, histopathology examinations, X-ray 

Mammography, Ultrasonography, Magnetic Resonance Imaging (MRI), Positron Emission 

Tomography (PET), Computed Tomography (CT) scan, Thermography and Hormone 

Receptor testing. Once the diagnosis is accurately completed, the treatment process is 

initiated through medications and surgery with optional additional treatments in the forms of 

chemotherapy, hormone therapy or radiation [2]. Although the above diagnosis methods are 

universally acclaimed, most are intensive, costly, and complex. In the field of medical, the 

decision support system for clinical analysis by using big data and AI methods has been 

largely developed for disease detection in recent years. These decision support systems utilize 

clinical data, including scan images. Gene expression analysis is one of the most important 

and efficient clinical data analysis methods that utilize the gene expression profiles of 

patients in diagnosing diseases. Due to the invading cancer cells, the patient's genomic data is 

characterized by the analysis of biomarkers and genetic information related to the specific 

mutation, variations or patterns used for the detection of breast cancer. Based on the genetic 
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information, the risk analysis and the possible treatment can be suggested [3]. Understanding 

the extracted genes and effectively distinguishing them from the normal cells for disease 

diagnosis plays an important role in the detection. Data mining and big data analysis 

techniques enhance the gene expression profiles and help in identifying breast cancer in 

patients distinctively. 

The ML and DL methods have many advanced techniques for data mining 

applications [4]. The Clinical decision support systems have higher effectiveness in learning 

disease patterns from clinical data using large-scale ML and DL methods. To analyze 

complex datasets such as gene expression datasets, traditional data mining methods were 

limited and time-consuming. For breast cancer detection, traditional statistical measure-based 

data mining methods reduce the effective detection method. By utilizing the advanced feature 

learning strategies, the limitations of ML and DL can be overcome [5]. To extract the specific 

features and for predictive learning, ML algorithms are easier to train on the gene expression 

dataset to aid in breast cancer detection. Due to the shallow learning property, the ML 

algorithms fail to learn the hidden patterns and extract the long-term correlations within the 

genomic data. The DL algorithms are used to upgrade the drawback of the shallow learning 

property and upgrade the ML algorithm by using deep feature learning. To detect breast 

cancer from the images and genomic datasets, DL algorithms such as CNN and RNN have 

been used previously [6]. These algorithms topped at learning the features and hidden 

complex patterns from gene expression profiles. Hence, this research aims to detect breast 

cancer by using advanced DL gene expression data analysis. For the DL algorithms, a larger 

amount of dataset is required for training and learning sufficient features which is difficult in 

smaller datasets. Compared to ML algorithms, DL algorithms provide highly effective results 

despite minor disadvantages. Developing a lightweight DL model can help to overcome these 

limitations and acquire accurate results. 

This paper has presented a hybrid classifier lightweight Convolutional Support Vector 

Machine (CSVM) for breast cancer prediction and classification method by integrating the 

SVM within the CNN architecture. The model used CNN's Convolution layer for feature 

learning, and SVM is used in the classification layer by replacing the softmax classifier 

function. CNN has the better feature extraction capability in breast cancer diagnosis and 

classification; it can enhance the visibility of malignancy in breast cancer profiles and add in 

the early treatment before further progression. For handling the dimensionality in gene 

expression, the softmax classifier in the final layer of the standard CNN architecture has 

limitations. Also, the softmax classifier is highly sensitive to input values and can cause over-

fitting issues. Therefore, in the proposed model, the softmax classifier is replaced with SVMs 

with a hybrid kernel to improve high-dimensional data classification. The proposed model 

initially utilizes the K-means clustering algorithm in the pre-processing stage to cluster the 

gene expression data. K-means clustering is utilized to enhance learning patterns and 

relationships among disease features. Hence, it clusters the genes within the breast cancer 

dataset by identifying potential biomarkers to be incorporated into the proposed model for 

accurate prediction. In the CSVM method, both the parameters of SVM and CNN are jointly 

trained instead of training separately. This improves the sequence-level feature learning. In 
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the presented method, the evaluation is performed grounded on the BRCA datasets from the 

Mendeley data. The paper is structured as: literature survey works in part 2. The presented 

CSVM-based breast cancer detection model is explained in part 3; the detailed analyzed 

results are in part 4, while part 5 presents a summary of the proposed research with 

suggestions for future studies. 

2. RELATED WORKS 

Algorithms such as Decision tree [7], SVM [8] and ANN were the baseline methods 

for breast cancer detection from various biological datasets utilized by many researchers 

recently before the introduction of DL methods. Elbashir [9] presented a method of 

lightweight CNN architecture for breast cancer prediction. This method pre-processes gene 

expression data and transforms it into a 2D image. Then, the outlier removal was done using 

the Array-Array Intensity Correlation (AAIC) technique, and CNN was used for the 

classification process. By using the RNA-seq gene expression data, F-Score, Accuracy, 

Precision, sensitivity and specificity of 0.955, 98.76%, 100%, 91.43% and 100%, 

respectively, were obtained. However, applying CNNs to gene expression data increased the 

computational demands. Jazayeri and Sajedi [10] proposed a Non-negative Matrix 

Factorization (NMF) and an Extreme Learning Machine (ELM) algorithm for classifying 

breast cancer. This method combined NMF with column splitting for dimension reduction, 

and ELM was used for the classification process. Experimented on the NCBI dataset, this 

model reduced the classification error rate by 2.7%, but it has problems handling feature 

redundancy, noises and irrelevant data. Arya and Saha [11] suggested a two-stage stacked 

ensemble framework for predicting breast cancer, with CNN used for extracting the features 

in the first stage and a stacked ensemble model using these features for final classification in 

the second stage. Tested on a multi-model dataset and obtained a 90.2% accuracy and 0.93 

AUC value. However, the CNN used in this model increased the complexity when stacked as 

an ensemble. Jia [12] proposed a DL-based model for the detection of breast cancer with gene 

selection using Weighted Gene expression network Analysis (WGCNA) and Differential 

Expression Analysis (DEA). The 23 genes were screened using Protein-Protein Interaction 

(PPI) and utilized different classifiers. ANN performed better with average accuracy, F1 

value, sensitivity, specificity, and AUC values of 97.36%, 0.8535, 98.32%, 89.59%, and 0.99 

for GSE15852 and TCGA-BC datasets.  

Lamba [13] presented a DNN-based classification for cancer in the breast. In this 

method, minority class balancing was performed using the SMOTE algorithm and BFS Best-

First Search was used for the selection of features and CFS before classifying using DNN. 

This model achieved 93% accuracy for GSE15852 datasets but has also suffered from over-

fitting issues due to a smaller sample size. Cheng [14] developed a DNN-based breast cancer 

detection model and combined ensemble learning with Systems biology feature selection 

methods. This model obtained AUC values of 0.7677 and 0.7836 between genes and clinical 

features and a concordance index (CI) of 0.6683 for the METABRIC dataset. Liu [15] 

proposed a hybrid DNN for predicting breast cancer based on multi-modal data that combines 

the gene model data with the image model data. The feature extraction network works based 

on weighted linear aggregation to improve the DNN performance in this method. This hybrid 
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model obtained 88.07% accuracy for the TCGA-BRCA dataset but suffers from a high 

processing time of 40 minutes. Alromema [16] introduced a sequential model by combining 

minimal Redundancy-Maximum Relevance (mRMR), a two-tailed unpaired t-test, and meta-

heuristics for hybrid Feature Selection (FS). This framework predictor selects the biomarkers 

gene for the ML classifiers. Evaluated on GSE22820, the XGBoost-based model with this 

hybrid FS framework achieves higher 0.976 accuracy, 0.974 of F1-Score, and 0.961 of AUC 

values, respectively. However, this FS framework requires large memory capacity and is 

time-consuming. 

Kayikci and Khoshgoftaar [17] proposed an attention-based deep learning model in 

multi-modal for breast cancer prediction. Initially, the features which are stacked are created 

using attention on sigmoid-gated CNN, and then, the flattened, dropout and dense processes 

are used for bi-modal attention. Experimented with multi-modal data combining the 

METABRIC and TCGA-BRCA datasets, the model gained a 0.95 AUC, accuracy of 0.912, 

precision of 0.841, and sensitivity of 0.798. However, this model increased the complexity of 

handling the multi-modal data. Mustafa [18] presented an ensemble model using multi-modal 

data and multiple neural networks for breast cancer survivability prediction. Here, CNN is 

used for clinical modalities. To handle data in multi-dimensional data and modalities in gene 

expression, LSTM is utilized and DNN is used for CNV effectively.  This model obtained 

98% accuracy, 99% F1-score, 98% precision, and 100% sensitivity for the METABRIC 

dataset, but the memory complexity is higher than other DL-based methods. Wang and Lee 

[19] proposed deep auto-encoders and K-means clustering for detecting the sub-groups of 

breast cancer. In this model, the deep auto-encoders extracted the latent features and are used 

in K-Means clustering to detect the two forecasting subgroups, namely BPS-LumA and 

WPS-LumA. The deep auto-encoders obtained MSE of 0.02 and 0.075 for METABRIC and 

TCGA datasets. However, training these deep auto-encoders was computationally expensive. 

Mohamed [20] proposed an Ebola optimization search (EOSA)-based CNN model used to 

diagnose cancer in the breast. Evaluations were performed using the TCGA dataset, and this 

model obtained accuracy, precision, recall, f1-score, kappa, specificity, and sensitivity values 

of 98.3%, 99%, 99%, 99%, 90.3%, 92.8%, and 98.9%, respectively. However, the 

imbalanced data issue has greatly reduced this EOSA-CNN model's performance. Table 1 

summarizes the performance of the literature methods over different BRCA datasets. 

Table.1. Comparison of Literature Methods 

Methods  Dataset Accuracy 

(%) 

Precision 

(%) 

F-measure 

(%) 

SVM [8] METABRIC 89.59 - - 

CNN [9] TCGA 98.76 100 95.5 

NMF-ELM [10] GSE32393  99.28 - - 

Two-stage Stacked 

Ensemble [11] 

METABRIC 90.02 84.01 - 

TCGA 88.01 94.9 - 

ANN-WGCNA-DEA 

[12] 

GSE15852 97.36 - 85.35 

TCGA 97.36 - 85.35 

DNN [13] GSE15852 93 - - 
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DNN ensemble [14] METABRIC 71.79 - - 

Hybrid DNN [15] TCGA 88.07 - - 

XGBoost-Hybrid FS [16] GSE22820 97.06 - 96.01 

Sigmoid gated attention 

CNN[17] 

GSE15852 91.02 84.01 - 

BC-TCGA 91.02 84.01 - 

Ensemble DL [18] METABRIC 98 98 99 

Deep Autoencoder-K-

means [19] 

METABRIC 92.05 - - 

TCGA 98 - - 

EOSA-CNN [20] TCGA 98.3 99 90.3 

The literature study shows that the recent advanced methods developed for breast 

cancer detection have significantly improved the prediction performance. However, some 

limitations are still needed to be considered. The results obtained by these models are 

obtained for different BRCA datasets. Comparing their performance using these results will 

be unfair since a method can work better for a dataset while underperforming for another 

dataset. The smaller sample size and high dimensionality of the gene expression datasets have 

significantly reduced the performance of ML and DL methods. Similarly, the complexity 

issues in DL-based methods are also a challenging concern. Therefore, a lightweight hybrid 

classifier-based breast cancer detection and classification model called CSVM has been 

developed in this paper. 

3. METHODOLOGY 

The proposed CSVM-based breast cancer detection model is illustrated in Fig. 1. 

Initially, the standard pre-processing techniques are applied on the input biological datasets, 

particularly for outlier removal. Then, these biological data are clustered using the K-means 

algorithm to improve the pattern-learning process. Finally, these clustered data are fed to the 

CSVM classifier, which learns the gene features and classifies the data into respective classes 

to identify the breast cancer samples. 

 

Fig.1. Overall Workflow of the Proposed Model 

BRCA Datasets 

Classification  

 

  

  

CNN without softmax 

Hybrid Kernel SVM 

Pre-processing 

  

  

Outlier Removal 

K-means Clustering 

Performance Evaluation 
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3.1. Datasets 

The publically available benchmark biological datasets for BRCA are collected from 

Mendeley Data [21]. The three biological datasets, BC-TCGA, GSE2034, and GSE25066, are 

used for evaluation. BC-TCGA consists of 61 normal samples, 529 breast cancer samples, 

and a total of 590 samples. GSE25066 contains 100 pathologic complete response (PCR) 

samples and 392 residual diseases (RD) samples among the 492 total samples. GSE2034 

contains 286 samples (107 recurrences and 179 no-recurrence samples). The number of genes 

in BC-TCGA, GSE2034, and GSE25066 are 17814, 12634 and 12634, respectively. Table 2 

illustrates the distribution of these biological datasets. 

Table.2. BRCA Gene Expression Data Distribution 

Datasets Genes 

count 

Samples count 

Overall Healthy Class Tumor Class 

BC-TCGA 17814 590 61 529 

GSE2034 12634 286 179 107 

GSE25066 12634 492 100 392 

 

3.2. Pre-processing Stage 

The pre-processing stage performs two vital tasks: outlier removal and initial data 

clustering. The BRCA biological data consists of outlier data that deviate largely from the 

other ranges. Hence, an outlier removal technique using a standard Z-score is applied to 

refine the input data. The refined data are clustered using the k-means algorithm to obtain 

similar genes for feature representation from the raw data. 

Outlier removal using Z-score: To estimate the standard deviations of data from the mean 

of the data group Z-score, a statistical measure is used. In BRCA gene expression datasets, 

the Z-score can be used to estimate and remove the outliers [22]. The Z-score is computed for 

each data point. 

𝑍𝑖 =
𝑥𝑖−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
        (1) 

Here, 𝑍𝑖 is the Z-score representation between (-3, 3) and 𝑥𝑖 denotes the data point. A 

threshold value of Z-score is determined beyond which the data point will be considered an 

outlier. The threshold can be positive or negative based on the used dataset. To indicate the 

data point following mean Z-score is used; the mean above the data point is considered a 

negative Z-Score, and the mean below the data point is considered a positive Z-score. This 

study sets the threshold as 2 as the BRCA datasets are not normally distributed. The data 

points above this threshold are considered outliers, and the decision to remove them is based 

on the number of outliers and their impact on the problem objectives. 

K-means algorithm for Data clustering: K-means clustering is employed to group the data 

samples according to the similar expression values of different genes. The clustering of 
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expression profiles is used for grouping both genes and samples and can also be used to 

promote new markers in specific types of cells along with the recognition of tumor sub-types 

[23]. Using k-means reduces the dimensionality of the samples and produces tighter clusters, 

especially if the clusters are globular with faster processing. The data is characterized by its 

expression levels across the samples, resulting in an n-dimensional numerical vector for each 

gene. K number of clusters is chosen as a user-defined parameter. The cluster centroids are 

randomly assigned in the gene expression space. For each sample, the Euclidean distance is 

calculated between the sample and the centroid. The centroid position for each cluster is 

updated by calculating the mean expression values for genes, and the algorithm then 

iteratively assigns each sample to the nearest centroid. The iteration is continuous until the 

centroid reaches the convergence point or until there is no significant change can be made for 

the centroid. The k-means algorithm is mathematically expressed by considering, 𝑋1, … . , 𝑋𝑛 

as the dimensional point set–𝑑 into the 𝐾 clusters that are to be clustered. Let 𝐶(𝑘) = {𝐶𝑘, 𝑘 =

1, … , 𝐾} is the 𝐾 clusters partition and 𝜇𝑘 is denoted to be the mean cluster𝐶𝑘: 

𝜇𝑘 ≔
1

|𝐶𝑘|
∑ 𝑋𝑖𝑖∈𝐶𝑘

          (2) 

Here, the cluster 𝑘 cardinality is denoted as |𝐶𝑘|.  The k-means approach aims to diminish the 

addition of the squared errors (SSE) for clusters 𝐶(𝑘) of each set as 

𝑆𝑆𝐸(𝐶(𝑘)) ≔ ∑ ∑ ǁ𝑋𝑖 − 𝜇𝑘ǁ2
2

𝑖∈𝐶𝑘

𝐾
𝑘=1        (3) 

Here, 𝑖 ∈ 𝐶𝑘 if ǁ𝑋𝑖 − 𝜇𝑘ǁ2 = 𝑚𝑖𝑛𝑘′ǁ𝑋𝑖 − 𝜇𝑘′ǁ2. By using the selection method, the cluster 

numbers for the k-means are calculated. This is a condemnation of criteria penalized on 

asymptotic for all positive integer 𝐾. 

𝑐𝑟𝑖𝑡(𝐾) ≔ ∑ ∑ ǁℎ(𝑋𝑖) − 𝜇ℎ,𝑘ǁ2
2

𝑖∈𝐶𝑘
+ 𝑝𝑒𝑛 (𝐾)𝐾

𝑘=1        (4) 

𝑐𝑟𝑖𝑡(𝐾) = ∑ min
𝑘=1,…,𝐾

ǁℎ(𝑋𝑖) − 𝜇ℎ,𝑘ǁ2
2 +       𝑝𝑒𝑛 (𝐾)𝑛

𝑖=1        (5) 

Here, for compositional data, transformation is denoted as ℎ. 𝑝𝑒𝑛: 𝑁 → 𝑅+is the function of 

penalty is defined by  

𝑝𝑒𝑛 (𝐾) ≔ 𝑎ℎ√𝐾𝑛𝑑          (6) 

 Until the multiplication factors are constant the term of penalty is determined. Therefore, the 

selected cluster number is given by 

�̂� ≔ 𝑎𝑟𝑔 min
𝐾≤𝑛

𝑐𝑟𝑖𝑡(𝐾)        (7) 

Thus, k-means clustering for gene expression data analysis is used to discover 

patterns and relationships among genes based on their expression profiles, effectively 

enhancing breast cancer classification.  
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3.3. Classification using the CSVM Method 

The proposed breast cancer detection model utilizes the Convolutional Support Vector 

Machine (CSVM) method to identify and classify cancer in breast samples. Different CSVM 

models have been developed in recent years [24], but this study develops a CSVM model 

using a hybrid kernel. In this model, the CNN and hybrid kernel SVM classifiers are 

integrated by removing the softmax classifier in the last layer of the CNN model and 

employing the SVM in its place. Fig.2 shows the architecture of the proposed CSVM model.  

 

Fig.2. Proposed CSVM Architecture 

In this proposed model, the CLs are used to identify the hidden features within the 

gene expression data, and these features are subsequently employed in SVM for the effective 

classification of cancer in breast and non-cancer samples. The significant advantage of the 

CL lies in its capability to learn the features that remain consistent despite translation, 

rotation, and shifting. A typical CNN comprises an input layer and numerous CLs linked 

together through pooling and output layers. The CL extracts the features by learning the 

characteristics of the samples within the expression data of the gene. The pooling layer 

focuses on the most informative data from the gene expression while discarding redundant 

data after the extracted features. For each convolution layer, the convolution operation is 

defined as  

ℎ𝑖𝑗
𝑘 = 𝑓((𝑊𝑘 ∗ 𝑥)𝑖𝑗 + 𝑏𝑘)        (8) 

Here, the activation function is defined as 𝑓, 𝑊𝑘 is the weight of the feature 𝑘𝑡ℎ map, and 

bias 𝑏𝑘 for 𝑘𝑡ℎ map. 

SVM possesses good non-linear mapping and linear regression can be performed in 

the feature space, which can also take high-dimensionality feature space to map the data. The 

regression is denoted as  

𝑓(𝑥) = 𝑤𝑇𝜑(𝑥) + 𝑏         (9) 
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Here, 𝜑 is defined as the non-linear function of mapping, 𝑤 is for weight, and 𝑏 refers to the 

bias, respectively. Therefore, optimizing SVM is performed as follows: 

𝐹𝑆𝑉𝑀 = min
𝑤,𝑏,𝜉,𝜉∗

1

2
𝑤𝑇𝑤 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1       (10) 

𝑠. 𝑡. {

𝑦𝑖 − (⧼𝑤, 𝑥𝑖⧽ + 𝑏) ≤ 휀 + 𝜉𝑖

(⧼𝑤, 𝑥𝑖⧽ + 𝑏) − 𝑦𝑖 ≤ 휀 + 𝜉𝑖
∗ (𝑖 = 1,2, … 𝑙)

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

  

Here, 𝐹𝑆𝑉𝑀 denotes the optimization function of the SVM, 𝑙 is sample numbers, the 

input 𝑥𝑖  and output 𝑦𝑖 for the training data, 𝑛 is the sample number, the upper and lower for 

training error are denoted as 𝜉, and 𝜉𝑖
∗; 휀 is the constant for regularization, and 𝐶 is said to be 

the loss-insensitive factor. The prediction function for this CSVM model is estimated as 

𝑓(𝑥, 𝑎𝑖, 𝑎𝑖
∗) = ∑ (𝑎𝑖 − 𝑎𝑖

∗)𝑛
𝑖=1 𝐾(𝑥, 𝑥𝑖) + 𝑏      (11) 

Here, 𝑎𝑖, 𝑎𝑖
∗ represents the Lagrange multipliers, and 𝐾(𝑥, 𝑥𝑖) denotes the function of 

a kernel for SVM. The major Kernel functions are linear, polynomial, radial basis function 

(RBF) and sigmoid functions. These kernels are formulated for input (𝑥, 𝑥𝑖) as follows: 

Sigmoid kernel: 

𝐾𝑆(𝑥, 𝑥𝑖) = 𝑡𝑎𝑛ℎ (𝜂 × (𝑥, 𝑥𝑖) + 𝛿)       (12) 

Polynomial kernel: 

𝐾𝑃(𝑥, 𝑥𝑖) =  (𝜂 × (𝑥. 𝑥𝑖) + 𝛿)𝑑       (13) 

Gaussian kernel: 

𝐾𝐺(𝑥, 𝑥𝑖) =  𝑒𝑥𝑝 (−
‖𝑥−𝑥𝑖‖2

2×𝜎2
)        (14) 

Here, 𝜎 is the standard deviation, and 𝜂, 𝛿 and 𝑑 are the kernel parameters. These 

parameters determine the filter size to be used in the classifier model. This study aims to 

improve SVM's strong learning ability and generalization performance by developing a 

hybrid kernel. Therefore, the hybrid kernel called the Sigmoid-Polynomial-Gaussian (SPG) 

kernel is formulated as 

𝐾𝑆𝑃𝐺 = 𝛽1.𝑒𝑥𝑝  (−𝛽2 𝑡𝑎𝑛ℎ  (
(𝜂×(𝑥.𝑥𝑖)+𝛿)𝑑

2×𝜎2 ) ) + 𝛽3. (𝑥. 𝑥𝑖)    (15) 

Here, 𝛽 = [ 𝛽1, 𝛽2, 𝛽3] is a vector with 𝛽1 + 𝛽2 + 𝛽3 = 1 and 𝜂, 𝛿, 𝑑 > 0.  

The difference between the softmax and the SVM lies in the parameterized function 

for the weighted matrices 𝑤. SVM aim to increase the separation circumference data points 

belonging to different classes, whereas the softmax classifier focuses on maximizing log-

likelihood and minimizing the cross-entropy. 
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The proposed CSVM model comprises three CLs and two fully connected layers 

(FCL). The CL bundles the pooling layers and batch normalization function with an optional 

dropout function. The foremost function of the input layer is to load the data and produce an 

output vector that serves as the input for the convolutional layer. The convolutional layer 

follows the input layer. To extract various features, different convolutional filters or kernels 

can be employed. The filters in the CL are 4, 8 and 16. A crucial feature of the convolutional 

operation is its ability to enhance the original features while reducing noise. The activation 

function Rectified Linear Unit (ReLU) and the Adam Optimization algorithm are employed 

for faster learning. The max-pooling is applied with a pool size of 2 and batch normalization 

[0,1]. The optional dropout is set at 5% to 20% whenever the feature learning process slows.  

 

Fig.3. Computational Process of CSVM 

The model employs six activation functions, namely, 𝑓1,  𝑓2, 𝑓3, 𝑓4, 𝑓5 and 𝑓6. The 

function 𝑓1 transfers the input to the CL1, 𝑓2 transfers the CL1 to the CL2, 𝑓3 transfers the 

CL2 to the CL3, 𝑓4 transfers the CL3 to the FCL1, 𝑓5 transfers the FCL1 to the FCL2 and 

finally, the function 𝑓6 transfers the FCL2 (softmax) to the output layer. The proposed model 

takes features as the input for the SVM, which is built and trained by extracting and loading 

the FCL1. This model is saved and reloaded, and the model for testing is built. The FCL1 is 

directly associated with the SVM layer, and the parameters are shared. Here, 𝜑 , the non-

linear mapping function, transfers the FCL1 to the SVM layer instead of the FCL2 containing 

the softmax classifier. Fig.3 illustrates the computational process of CSVM for the BRCA 

datasets. 
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4. RESULT AND DISCUSSION 

The suggested CSVM-based breast cancer detection model is evaluated using 

benchmark biological gene expression datasets for BRCA from Mendeley Data. The 

implementations use an i5 processor in Intel of Windows 10 OS in a controlled environment 

along with the MATLAB tool (R2021a), with RAM of 8GB and SSD of 512GB. The 

evaluation parameters are accuracy, Precision, Recall, F-Measure, and Processing Time. The 

results obtained in Table 1 were obtained for different BRCA datasets with different numbers 

of samples and features. Comparing the performance using these results will be unfair since a 

method in literature can work better for one biological dataset while underperforming for 

another biological dataset. Therefore, the methods in the literature are also implemented 

similarly to the proposed CSVM model using the benchmark biological datasets for BRCA 

and enforced in the same environment as the presented model to ensure fair comparisons. 

Table 3 demonstrates the performance comparisons of the proposed CSVM-based model 

against the existing methods for the BC-TCGA dataset. 

Table.3. Performance comparison for BC-TCGA 

Methods Used Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Processing 

time (s) 

Decision Tree [7] 82.34 83.56 78.77 81.09 9.57 

SVM [8] 89.59 86.54 89.91 88.19 12.62 

CNN [9] 95.77 93.21 90.61 91.89 9.44 

NMF-ELM [10] 91.83 88.94 85.17 87.01 12.93 

Two-stage Stacked 

Ensemble [11] 

92.25 89.10 84.28 86.62 14.35 

ANN-WGCNA-DEA [12] 91.50 86.71 82.15 84.37 11.09 

DNN [13] 92.18 90.45 87.36 88.88 10.67 

DNN ensemble [14] 95.67 93.33 90.81 92.05 13.05 

Hybrid DNN [15] 94.91 91.72 89.65 90.67 10.45 

XGBoost-Hybrid FS [16] 94.45 92.13 93.56 92.84 11.98 

Sigmoid gated attention 

CNN[17] 

96.33 92.22 90.02 91.11 14.59 

Ensemble DL [18] 94.76 90.35 88.76 89.55 9.92 

Deep Autoencoder-K-

means [19] 

93.23 93.59 90.43 91.98 12.91 

EOSA-CNN [20] 96.47 91.0 92.89 91.94 8.87 

Proposed CSVM 97.89 98.11 93.80 95.91 8.32 

 

The evaluation of the proposed CSVM-based classification model for cancer in the 

breast executes better when compared to other models for the BC-TCGA dataset. There have 

been accuracy improvements in the CSVM, approximately by 1.42%, 4.66%, 3.13%, 1.56%, 

3.44%, 2.98%, 2.22%, 5.71%, 6.39%, 5.64%, 6.06%, 2.12%, 8.3%, and 15.55% higher than 
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EOSA-CNN, Deep Autoencoder-K-means, Ensemble DL, Sigmoid gated attention CNN, 

XGBoost-Hybrid FS, Hybrid DNN, DNN ensemble, DNN, ANN-WGCNA-DEA, Two-stage 

Stacked Ensemble, NMF-ELM, CNN, SVM, and Decision Tree methods, respectively. 

Similarly, better evaluation is obtained in terms of recall, F-measure and precision 

parameters. The time for processing the CSVM model is also less than the other methods. 

The performance comparisons made for the GSE2034 dataset are shown in Table 4. 

Table.4. Performance comparison for GSE2034 

Methods Used Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Processing 

time (s) 

Decision Tree [7] 84.97 86.8 83.99 85.37 9.91 

SVM [8] 89.21 88.64 84.38 86.46 14.52 

CNN [9] 90.98 87.93 83.37 85.59 15.35 

NMF-ELM [10] 93.76 92.74 93.09 92.92 9.35 

Two-stage Stacked 

Ensemble [11] 

90.89 90.62 91.54 91.08 8.17 

ANN-WGCNA-DEA [12] 94.01 91.98 84.32 87.98 12.55 

DNN [13] 90.87 89.58 83.17 86.26 8.78 

DNN ensemble [14] 93.19 91.84 88.90 90.35 8.36 

Hybrid DNN [15] 90.84 90.11 95.22 92.55 15.56 

XGBoost-Hybrid FS [16] 91.54 94.97 88.81 91.79 9.46 

Sigmoid gated attention 

CNN[17] 

94.94 94.26 86.62 90.28 11.78 

Ensemble DL [18] 94.69 88.19 94.06 91.03 13.88 

Deep Autoencoder-K-

means [19] 

92.95 91.74 93.90 92.81 10.13 

EOSA-CNN [20] 95.65 93.89 94.53 94.21 8.30 

Proposed CSVM 96.85 95.50 96.78 96.14 7.92 

 

The evaluation for the GSE2034 dataset also shows that the CSVM-based model 

performs best than the extant methods. CSVM model achieved accuracy of 96.85% which is 

1.2%, 3.9%, 2.16%, 1.91%, 5.31%, 6.01%, 3.66%, 5.98%, 2.84%, 5.96%, 3.09%, 5.87%, 

7.64%, and 11.88% higher than the EOSA-CNN, Deep Autoencoder-K-means, Ensemble 

DL, Sigmoid gated attention CNN, XGBoost-Hybrid FS, Hybrid DNN, DNN ensemble, 

DNN, ANN-WGCNA-DEA, Two-stage Stacked Ensemble, NMF-ELM, CNN, SVM, and 

Decision Tree methods, respectively. Similarly, better evaluation is obtained in terms of F-

measure, recall precision and processing time. Similarly, the performance comparisons made 

for the GSE25066 dataset are exhibited in Table 5. 

Table.5. Performance comparison for GSE25066 

Methods Used Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Processing 

time (s) 
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Decision Tree [7] 83.83 84.41 80.9 82.62 12.52 

SVM [8] 88.74 86.49 81.85 84.11 11.90 

CNN [9] 91.35 88.5 82.65 85.48 11.17 

NMF-ELM [10] 93.66 91.13 89.19 90.15 10.59 

Two-stage Stacked 

Ensemble [11] 

92.42 92.97 90.95 91.95 9.76 

ANN-WGCNA-DEA [12] 94.91 88.16 83.83 85.94 12.22 

DNN [13] 93.51 92.84 87.27 89.97 10.15 

DNN ensemble [14] 92.95 92.23 85.63 88.81 12.50 

Hybrid DNN [15] 92.8 91.03 89.3 90.16 12.97 

XGBoost-Hybrid FS [16] 96.67 90.19 88.85 89.52 10.56 

Sigmoid gated attention 

CNN[17] 

89.91 95.23 84.88 89.76 13.98 

Ensemble DL [18] 94.68 97.24 90.16 93.57 12.15 

Deep Autoencoder-K-

means [19] 

95.9 92.58 93.17 92.87 11.37 

EOSA-CNN [20] 97.32 95.79 92.85 94.30 12.54 

Proposed CSVM 98.11 97.67 94.48 96.05 9.31 

 

For GSE25066 dataset, the proposed CSVM model achieved 96.85% accuracy, which 

is 0.79%, 2.21%, 3.43%, 8.2%, 1.44%, 5.31%, 5.16%, 4.6%, 3.2%, 5.69%, 4.45%, 6.76%, 

9.37%, and 14.28% higher than the EOSA-CNN, Deep Autoencoder-K-means, Ensemble 

DL, Sigmoid gated attention CNN, XGBoost-Hybrid FS, Hybrid DNN, DNN ensemble, 

DNN, ANN-WGCNA-DEA, Two-stage Stacked Ensemble, NMF-ELM, CNN, SVM, and 

Decision Tree methods, respectively. Similarly, better performance is obtained in terms of 

processing time, F-measure, recall and precision. These improved outcomes of the CSVM-

based model improved convergence and advanced learning-based classification. It concludes 

that the proposed CSVM has better examined and obtained the accurate classification of 

cancer in the breast with less complexity on the biological gene expression data.  

5. CONCLUSION 

This research has developed an advanced hybrid classifier of CSVM with a hybrid 

kernel for improving the classification of the expression data in genes for better cancer in 

breast detection through biological data analysis. The proposed CSVM classifier overcomes 

the high computation and model complexity issues for dissecting the biological gene 

expression data. It is used along with the K-means data clustering approach and evaluated 

over biological datasets for BRCA from the Mendeley repository. The proposed CSVM-

based breast cancer detection model obtained classification accuracies of 97.89%, 96.85%, 

and 98.11%, respectively, for BC-TCGA, GSE2034, and GSE25066 datasets, with less time 

for processing. Thus, the proposed model has achieved significantly improved performance 

for breast cancer detection, but still, there is room for improvement. The class imbalance 
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problem and variability of expression levels of the biological datasets will be investigated in 

future research. 
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