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1. Introduction

Data processing is one of the most important scientific topics, because it is directly related to
all types of science and experiments. We need a science that specializes in the problems of
data processing and analysis, and this science is the science of statistics. Statistics is a broad
science and has many branches, but what concerns us is time series.

The time series is a collections of observations generated sequentially through time or any
parameter. There are several types of time series, including continuous ones, in which
measurements or readings can be taken at every moment of the series, but most series are
discrete time series, which discrete time series consists of data points separated by certain
time intervals. Time series can be divided according to the type of data into several types,
such as: Binary time series, Count time series, Categorical time series. Categorical data is
data that can be anything but numbers, such as letters, colors, symbols, etc.

The time series can be analyzed in two ways: the first method is within the time domain, and
the second method is within the frequency domain, which is done in several ways, such as
spectral analysis or wavelet analysis, or spectral envelope analysis method.

In spectral envelope analysis, we need weight functions for the purpose of obtaining accurate
results, which is called the kernel function, and there are many weight functions that can be
used, such as: The Beta kenel, Parzen kernel, Dirichlet kenel, etc.

In this research, we will analyze a sample of human DNA, which is considered categorical
data. The analysis will be within the frequency domain of the spectral envelope of the time
series, and in our analysis we will use the Dirichlet Kernel estimator, modify danielle Kernel
estimator and The Fejér Kernel.

The goal of this research is modling the categorical time series by estimating the spectral
envelope function in several methods and functions which are: Dirichlet Kernel estimator,
modify danielle Kernel estimator and The Fejér Kernel, in order to compare these methods
and find out the best method.

Spectral Envelope
The spectral envelope is a frequency-based, principal components technique applied to a

multivariate time series. Now if we suppose that x,, t=0,£1,+2,... is a stationary categorical
time series, with finite state-space which is ¢ = {cy, ¢, ..., Cx } values, then we suppose
the numeric value a; for any €;. So @ is a vector of the real values, o=(a;,a;,...,a%)", and
pj = P?"(xt = j) > 0, and h(x;) be stationary time series with the real value. Now we
defined Y; as the flowing:
Y}{Zj if x; = ¢ f'(J?’j =_1,2,3 k=1

oif x; = ¢
When Z; is a vector of k items, all its items are zero except jth row are one. And o are kx1
vector, all its items are zero. Then we come collusion h(x,) = a’Y;, all so h(x;) = a;

The probability space of the DNA is {A, C, G, T}, so we can design Y; as following:

Y, =(1,0,0),when X; = A
Y, =(0,1,0),when X, =C
Y, =(0,0,1),when X, =G
Y, =(0,0,0),whenX, =T
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So the goal is chose the best value to a so that maximize the power at each frequency o as

follow:
Jrex(w:ax)

A(w) = max, o2(a)

Where

AMw) is the power of the frequency, fi,(w:a) is the spectral density and

o?(a) = var{h(x,)}.

suppose the vector process Y, has a continuous spectral density denoted by fyy (w) and for

each w there are k X k complex-valued Hermitian matrix. as we have h(x;) = a’Y;

suggest  frx (w2 @) = & fi,,(w)a@. Now, if f; (w) are the real part of fy,,(w) and
i}”(w) the imaginary part of f},(w), and as f (w) is skew-symmetric, so

fim(w) = —f(w) and x = x"¢ + ix"™ so &’ fy,(w)a = & fjf(w)a

Aw) = o f7 (w)a

o Va
where V'is the variance-covariance matrix of y,. Where p = (py,02, -, Pr)

V=D-pp’, and DISKXxK diagonal matrix D = diag{py,p2,--, Pk} BY
assumption, p; >0, j = 1,..., k; so the rank(V) = k — 1 with the null space of being
spanned by I, for any k X (k — 1) full rank matrix @ whose columns are linearly
independent of I . And QVQ isa (k — 1) x (k — 1) positive symmetric matrix.

If £, (w) is a consistenteach j = 1, ..., ], the largest root of f¢ (w) is distinct, then

a[A(wy) = A(w)] |

R R, g (o) (@) = 1} @
(@)

converges jointly in distribution to independent zero-mean, normal distribution as n — oo

the value of 1, in the equation (1) depends on the type of the estimator. In our study, the

smoothed periodogram matrix
n( ) fxx = Zl— mh In(w + l/n)

If we use the smoothed periodogram matrix with weight h; then n,, 2 o hl

Peak searching for the smoothed spectral envelope estimate can be aided using the following
approximations. Using a first-order Taylor expansion, we have

logA(w) = log A(w) + A(w/)l(—l(-ﬂ/)l(w)

Hence E[logi(w)] =~ logA(w) and var[logi(w)] ~ 1, 2 because
qn(logj(w) — log)l(w)) is standard normal [1].

Kernel Estimator Methods

In nonparametric statistics, a kernel is a weighting function used to estimate the spectral
density and spectral envelope density where they are known as window functions [2].

The Dirichlet kernel estimator is a general stat of the beta kernel estimator. it is an
asymmetric kernel Which is basically derived from dirichlet distribution [4].

The dirichlet kernel function defined as follow:
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Kpn(6) = ;—ﬁ(l +2 Z cos(k@))
k

=1

1 sin(n + 0.5)6

T2 sin(w/2)

As for Fejér kernel, its function is given as:
T+1

21

_ . (T+1 2
Kr(w) 1 (SID(T‘”)) otherwise

w=20

2n(T+1) sing
And the properties of this function is:
1-Kr(w) = 0 and Ky (w) = Ky (—w) for all w.
2- K;-(w) is periodic with period 27t.
3- [ Kr(w)dw =1
4-forany 0 € (0,7) and forall 8 < |w| < 7, we have [5]

[Kr(w)] <

2m(N + 1)sin? g

Modify Daniell is considered an development of Daniell kernel, Modify Daniell kernel
smooths our model and reduces some of the variability that we saw in the sample spectrum. If
we make the smoothing window wider, we will reduce the variability even further and it will
make the forecasting difficult, but otherwise we will make the bias bigger. The abrupt change
at the end points of the Daniell window could be softened by making the weights decrease at
the extreme [6].

This function can be given as following:

WT(K)=2T11 for—T<k<T

Stationarity in Time Series

One of the most important things that we must take into consideration is the stationarity of
the time series, meaning that the series should not contain a trend., the trend can be defined
"any systematical change in the level of a time series”, because calculating the mean,
variance, and autocorrelation in non-stationary time series will be complicated, and will cause
inaccurate analysis of the time series. One of the ways that we can reduce the effect of the
trend is to divide the series into a group of segments, and analyze each segment separately,
because this will reduce the effect of the trend. Where we will divide the time series by: Tree-
Based Adaptive Segmentation as the following:

1- The series is divided by two segmentations which is the level one, then each segmentation
(Which are called blocks) are divided by two in level two till k-times in level k which is the

deeper level. If T is the length of the entire series, then length of each block are T /2%

2- We will denote the block B(k, 1), L is the -th block in k level, and N}, is the length of
blocks in Kk level.
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3- Estimate the distance between two blocks. Let D (k, l) be between two adjacent blocks,
B(K + 1,20) and B(K + 1,21l — 1) Compute the estimates of the distances D (k, 1)
4-fork—1,...,0andl =1, ..., 2%

If D(k,))<D(K+12l—-1)+D (K+1,2l) then mark the block B(k,!)
Otherwise, leave the block B(k, 1)

5- The Final Segmentation determines the Segmentation depth. The final segmentation will
be set of the highest marked blocks which is marked and its ancestor blocks are not marked

[7]1.

LOCAL SPECTRAL ENVELOPE
T-1
Let's assume k X 1 a vector value of pricewise stationary process, {YS,T}S 0 forT =1

where T is the length of series, is given as:

B
Ys,r = Z YS,DI(S/T:UD)
b=1

Where Y'S,b are stationary processes with continuous k X k spectral matrices fs,b (w) of b
block. And U, = [u,_quy,) € [0,1) is the interval. And I(s/T,U,) is an indicator
which be equal to 1 if s/b € U, and 0 otherwise.
now let rescale time in each block, so:
{Yopis/teU,} o {Y,:c=0,..,M, — 1}
and the number of observations in segment b is M, and 2.5, M;, = T. This rescaling of
time represents a simple time shift to the origin where Y, = Y;;, for s/t € U, with
t=s— Xz M
We shall say that a categorical time series, {xSJT}, on a finite state-space and with nonzero
marginal, is pieceunise stationary if the corresponding k X 1point process, {Y;,T}, §
piecewise stationary. To assure that more observations fall within each stationary segment (or
block) upon sampling the process X5, we assume that the lower bound, M, for the number
of observations in each block, b, satisfies M — coas T — 0.
If X r is a piecewise stationary categorical time series, we define the local spectral envelope
as follows. The local analogue of the optimality criterion
sub o« fyy(w)a y;

Ap(w) =—s

a < [ o vpa
for b = 1,2, ..., B where v}, is the variance-covariance matrix of ¥; ;, and 4, (w) the local
spectral envelope and the corresponding eigenvector & (w) to be the local optimal scaling

of block b and frequency w.

now we present some asymptotic 7" = oo results for estimators of the local spectral envelope
and the corresponding local scaling vectors.

Next Let Q whose columns are linearly independent of I., namely, Q = [Ix_1|0], and let

Vb be the sample variance-covariance matrix obtained from the data in segment
b,{l@,T: s/T € Ub}, or equivalently,{lf;,b: t=01,.., M, — 1}. So
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def

Yoo _ Q¥

this operation has the effect of removing the k-th element fromY; 5, so that it is now a
(k — 1) X 1 vector. In this case, we denote:

vb dif vaQ and f Y,b (w) di’f Qf Y,b (w)Q
note that ¥/, and fAY,b (w) are now the upper (k — 1) X (k — 1) blocks of the previously
defined ¥V, and fy’b (w) matrices, respectively. In addition, we will use the same convention

for the population values ¥, and fﬁyjb (w).
For simplicity and without loss of generality, we define the local sample spectral envelope,
Ap (W), to be the largest eigenvalue of g% (w) where:

~ _ 5H-1\27 H-1\2
gr =V, \ frvVy \
The local sample optimal scaling, @, (w), is then defined by @, (w) = V;l\zﬁb (w),

where ,, (w) is the eigenvector of §5¢(w) associated with the root hat A, (w) The scale
corresponding to the k-th category is held fixed at zero. Furthermore, let 4, (w) be
normalized so i, %, (w) = 1, and with the first nonzero entry of i, (w)taken to be
positive.

To allow for the application of a general theory in obtaining asymptotic distributions for the
estimates of the local spectral density fy,b (w), we assume throughout this section that Y pis
strictly stationary for each block b, and that all local cumulant spectra, of all orders, exist for
each series Yt,b The assumption of the existence of all local cumulant spectra is not

restrictive in the categorical case because the elements of Y; ;, take on only two values, zero
or one. Rather than introduce excessive notation [8].
The local periodogram of the data {Y;JT: s/T € Ub} in black b is given by:
I(w) = dy(w)dy(w)
Where

Mp—1
db ((ﬂ) — Mb_l\z Z Yt,be—zmmt

t=0

Is the finite fourier transform of the data {Y;JT: s/T € Ub}.
Where

m
fY,b =(2m+ 17! Z Iy(w+i/Mp)
i=—m
Now the algorithm and calculations can be simplified by merging any two adjacent blocks if
they have similar behavior in the spectral envelope, and the similarity in behavior can be
measured using the algorithm Kullback-Leibler divergence as the follow:

1(p0,q@) = ) (logzg)pm >0

Where p(x) and q(x) denote the probability density functions of random variable x.
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To apply the algorlthm Kullback-Leibler divergence on local spectral envelope we suppose
AK+1 2 (wj), /11{+1 21-1(wj) are local sample spectral envelope at the frequency w; for

the blocks B(K + 1,20) and B(K + 1,2l — 1). The we can find the Kullback-Leibler
divergence between the two block as:

Mg /2+1
DKL) = 1 KZ: 1 (@) log~ Ak s1,21(@))
) =0T k+1,21(@j
Mg/2+1 = ¥ ! k+1,21-1(;)

As Kullback-Leibler divergence are not symmetric, then we should us a symmetrised
divergence, which defined as:

n n
1 ; 1 D;
I(p,q) —;Z (pllogq +4; log _)—;Z( logq[)

i=1 =1
So by the tow equatlons we get [7]:
Mg /2+1 Akra21(@))
D(K,1) = Zj=K0/ ’ {(;{K+121(w) Ag+1,20-1) log 7= }

M /2+1 -;{K+12l 1(w;)

we will calculate the amount of its efficiency by calculating the SNR, which is Signal-to-
noise ratio, where the higher the ratio, the lower the efficiency of the function, and vice versa.
And the SNR is given as:

PZ
SNR = 1010g—

pi
Where p, average power of signal, Where p,, average power of noise.

SIMULATION
In order to ensure the effectiveness of our algorithm, we will simulate it on data generated
through equations (2) and (3):

X,(t) = 2cos (2173) + cos (Z;I ) +0.3¢,(t) (2)

X,(t) = cos (?) + 0.01e,(t) (3)

and €;(t) and €,(t) are Gaussian white noise and with unit variance [8]. We repeat the

experiment 500 times to reach the stability in our results. We set the deepest level at K = 4 to
get best segmentation of the data set simulated.

Table (1)
SNR.DIR SNR.FEJ SNR.MDA €2 €l
0.3716449 0.400329 0.4298197 0.1
0.3843005 0.40553 0.4310931 0.2
0.3844411 0.4069628 0.4300496 0.3 0.1
0.3856573 0.4010184 0.4279381 0.4
0.377933 0.4067566 0.4311372 0.5
0.7628395 0.8025926 0.8580769 0.1
0.7661904 0.8255708 0.8769 0.2
0.7700758 0.8127702 0.8724363 0.3 0.2
0.7713775 0.8341745 0.8790027 0.4
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0.7532902 0.7964639 0.8641199 0.5
1.149613 1.208427 1.269268 0.1
1.147468 1.211061 1.295924 0.2
1.163584 1.225195 1.286477 0.3 03
1.174593 1.287403 1.344623 0.4 '
1.165727 1.205203 1.283201 0.5
1.552434 1.625218 1.706787 0.1
1.524964 1.634251 1.72714 0.2
1.52105 1.618786 1.697334 0.3 04
1.51946 1.627191 1.706705 0.4 '
1.526252 1.587807 1.688534 0.5
1.890793 2.009025 2.147682 0.1
1.931691 2.077368 2.198115 0.2
1.925021 2.055334 2.172029 0.3 05
1.887476 2.022909 2.14441 0.4 '
1.904484 2.065318 2.189037 0.5

Case (1) when the series length T = 64: This table shows the values of SNR of the three
kernels (dirichlet, modify daniell and Féjer) also we notice that the Dirichlet function is the
least function that has SNR, followed by the Féjer function, then the modified Daniell
function, and this indicates that the the Dirichlet is the best in the first place, and Féjer is the

second, and the modify daniell is the least efficient. with different values of €;(t) and
€,(t),and ¢, (t) = 0.1,0.2,0.3,0.4,0.5 and €, (t) = 0.1,0.2,0.3,0.4,0.5 , We will
notice an increase in SNR with an increase in €;(t), while an increase in €,(t) did not
affect the value of SNR.

Table (2)

SNR.DIR SNR.FEJ SNR.MDA 2 el
0.4916296 0.5185052 0.5388679 0.1

0.4875641 0.5159508 0.5412174 0.2 0.1
0.4903628 0.5069003 0.5398473 0.3
0.4934298 0.512536 0.5402371 0.4
0.4915778 0.5032324 0.5295313 05
0.9920309 1.025035 1.078214 0.1

0.9787744 1.024076 1.064123 0.2 0.2
0.9760111 1.034798 1.067418 0.3
0.9666547 1.019706 1.052843 0.4
0.9622879 1.01305 1.055073 05
1.44927 1.531902 1.597485 0.1

1.476582 1.5332 1.600587 0.2 0.3
1.460798 1.536524 1.592947 0.3
1.464646 1.535674 1.606712 0.4
1.475798 1.516616 1.590978 05
1.955448 2.038051 2113182 0.1

1.966233 2.024986 2.124478 0.2 0.4
1.968392 2.06911 2.16706 0.3
1.919457 2.045421 2.158698 0.4
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1.927068 2.054976 2.147391 0.5
2.448022 2.551684 2.652292 0.1
2.444091 2.552906 2.689711 0.2 0.5
2.44182 2.550657 2.694096 0.3
2.434137 2.519359 2.636933 0.4
2.450165 2.537289 2.691139 0.5

Case (2) when the series length T = 128: in the table above we have the values of SNR of

the three functions of the kernels (dirichlet, modify daniell and Féjer) Through it, we can
make sure that the best method is Dirichlet and the least efficient is Modify Daniell, and this
depends on the small amount of SNR, the least method is more efficient, with different

values of ¢ (t) and &,(t), and ¢(t)=0.1,0.2,0.3,0.4,0.5 and
e,(t) =0.1,0.2,0.3,0.4,0.5 , We will notice an increase in SNR with an increase in
€, (t), while an increase in €, (t) did not affect the value of SNR.

Table (3)
SNR.DIR SNR.FEJ SNR.MDA €2 €l
0.6388364 0.6580156 0.6884488 0.1
0.6353982 0.6460467 0.6673244 0.2
0.6299271 0.6468314 0.6688786 0.3 01
0.6518823 0.6681748 0.6861094 0.4 '
0.6514229 0.6657707 0.6899997 0.5
1.304429 1.332485 1.359883 0.1
1.270372 1.281991 1.347287 0.2
1.297633 1.313348 1.364689 0.3 0.2
1.297604 1.315829 1.359966 0.4 '
1.28379 1.317899 1.360493 0.5
1.919325 1.982515 2.06656 0.1
1.938994 1.978266 2.066572 0.2
1.972616 2.031568 2.093187 0.3 0.3
1.9409 1.983267 2.039123 0.4 '
1.926553 1.961336 2.022034 0.5
2.607022 2.644573 2.752029 0.1
2.545621 2.595872 2.701873 0.2
2.599238 2.636847 2.750788 0.3 04
2.578736 2.607909 2.71972 0.4 '
2.580245 2.656141 2.718683 0.5
3.244801 3.293663 3.40992 0.1
3.217919 3.292232 3.435937 0.2
3.194905 3.252596 3.352632 0.3 05
3.230507 3.310323 3.404721 0.4 '
3.260982 3.302506 3.425728 0.5

affected by

a

change in

values

Case (3) when the series length T = 256: it is the values of SNR of kernels functions
€,(t) =0.1,0.2,0.3,0.4,0.5 and
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€,(t) =0.1,0.2,0.3,0.4,0.5, Since Dirichlet has a lower SNR, then it is the best
method, followed by Féjer and then Modify Daniell.

Table (4)

SNR.DIR SNR.FEJ SNR.MDA 2 el
0.8528351 0.8509396 0.8609303 0.1
0.8610108 0.8632214 0.8769899 0.2
0.8643097 0.8611453 0.8727881 0.3 01
0.8574658 0.8531526 0.85884 0.4 '
0.859195 0.8636694 0.8687784 05

1.718979 1.734656 1.753989 0.1

1.686205 1.692459 1.723663 0.2

1.737542 1.724064 1.770104 0.3 00
1.711009 1729026 1.767159 0.4 '
1.705533 1.710395 1.740164 05

2.622079 2.590571 2.644265 0.1

2.574888 2.604067 2.66691 0.2

2.587633 2.595195 2.633649 0.3 03
2.603265 2.602385 2.652459 0.4 '
2.574234 2.587266 2.643174 05

3.446554 3.456571 3.515744 0.1

3.449007 3.401074 3.471733 0.2

3.438864 3.430769 3.511962 0.3 04
3.463009 3.489161 3.527932 0.4 '
3.424694 3.450596 3.519508 05

4.295082 4.304542 4362178 0.1

4280181 4260857 4372519 0.2

4299988 4.251576 4.349968 0.3 05
4324139 4321861 4362505 0.4 '
4.303323 4326193 4.462218 05

Case (4) when the series length T = 512: The table above shows the values of SNR of the
three kernels (dirichlet, modify daniell and Féjer) also we notice that the Dirichlet function is
the least function that has SNR, followed by the Féjer function, then the modified Daniell
function, and this indicates that the The dirichlet is the best in the first place, and in the
second place, the Féjer is the best, and the modify daniell is the least efficient., the values of
with different values of €;(t) and €,(t), and € (t) = 0.1,0.2,0.3,0.4,0.5 and
e,(t) =0.1,0.2,0.3,0.4,0.5 . We will notice an increase in SNR with an increase in

€, (t), while an increase in €,(t) did not effect on the value of SNR. And through the
previous six tables, we notice that the value of SNR increases with the increase in the mole of
the sreies.

Now we see the Dirichlet function is the least function that has SNR, followed by the Féjer
function, then the modified Daniell function, and this indicates that the Dirichlet function is
the best because the percentage of confusion in it is less, and the modified Daniell function is
the least efficient among the three functions because it has the higher distortion rate, so, it is
the least efficient function.
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Dna Data

First, we will take a quick look at what DNA is, The DNA is a sequence of letters which
represents information of the DNA strand. The DNA strand is made up of a long string of
chemical building blocks called "nucleotides”. Each nucleotide is made up of nitrogenous
base, a five carbon sugar, and a phosphate group. There are four different nitrogenous bases,
which are labeled A(Adenine), T(Thymine), G(Guanine) and C(Cytosine). Nucleotides are
arranged in two long strands that form a spiral called a double helix. The strands are
complementary; Adenine with Thymine and Cytosine with Guanine. So, it is sufficient to
represent a DNA molecule by the sequence of nitrogen bases on one single strand.

The data collected is the first 8192 sequences of nitrogenous bases of Homo sapiens

, '|}f| Il l ‘
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Figure (1) Representing the data in the form of a chart, where the number 1 represents the
nuclide A, the number 2 represents the nuclide C, the number 3 represents the nuccludite G,
and the number 4 represents the nuccludite T

S

—

After modeling and analyzing it, we obtained the following value of SNR of kernles:

The method SNR
Dirichlet 12.42816
Féjer 12.44902
Modify Daniell 12.73957

Through the results, we notice that preference was given to the Dirichlet method, then Féjer,
and finally the modify Daniell, and this is completely consistent with the simulation results.

MMMMMM{WWMAW

Figure (2) The SNR amount is shown under the Dirichlet method
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Here we notice a peak at frequencies w,73, = 0.33349 which coincide to the period of

P = 18.8407 This reference that the data shows an approximate Nineteen sequence cycle.

This peak indicates the possibility of a genetic mutation. Where, during a DNA test, it is
stimulated to replicate and reproduce itself.When the DNA is doubled, an incorrect
association of the nitrogenous bases occurs in the DNA, and this may lead to the emergence
of an unwanted genetic trait

2. Conclusions

It was found that the length of the series has an effect on increasing the SNR of the spectral
envelope, and this matches the effect ofe;, which is the amount of random error in function

(6), while €, had no effect, which is the amount of random error in function (7), as Equations
(6) and (7) are the two functions that generate the data in the simulation. And also It was
found in simulation that Dirichlet is less disruptive than Féjer and modify Daniell so it is the
best method, this is what we found also in the application in real data when we applied the
scenario to the DNA.
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