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Abstract
Microplastics (MPs) are a global threat to marine life, but information available
on the extent of pollution along the Kenya Indian ocean coast is absent. Ingestion
of MPs by five common pelagic fish from the region was investigated in this
study. Fish tissues were digested in 10% potassium Hydroxide (KOH) at 60°C for
14 h and the MPs separated by floatation method using supersaturated Sodium
Chloride (NaCl) solution. The benthic fish studied (Acanthopagrus berda with a
mean of 0.48 ± 0.06 MPs per gram (g-1) tissue, Gerres oyena 0.20 ± 0.02, Terapon
jarbua 0.20 ± 0.06) had higher MPs contamination compared to the pelagic
(Rastrelliger kanagurta 0.054 ± 0.011) and reef fish (Leptoscarus vaigiensis 0.038 ±
0.009) reflecting the influence of habits and habitat on MPs contamination in fish.
Fish caught in the second sampling had higher MPs contamination compared to
the first and fish from Mida Creek had higher MPs contamination compared to
those from Tudor and Port-Reitz probably because they were mainly benthic
fish. Gut and gills of all species contained significantly higher concentrations of
MPs than the flesh. Thus, we recommend that fish be gutted and thoroughly
clean the gills before cooking to reduce MPs contamination. There is need for
further research to evaluate the risk posed to humans by the consumption of
marine water fish that ingested MPs.

Keywords: Microplastic contamination, Fish, Creeks, Western Indian Ocean Kenya coast

1. Introduction
Pollution of the oceans with Microplastics (MPs) and their potential impact along marine food web through
consumption is of increasing concern (Cole et al., 2013; Eerkes- Medrand et al., 2015; Romeo et al., 2015; and
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Beer et al., 2018). Barnes et al. (2009), defined MPs as synthetic particles measuring < 5 mm in diameter. They
can be primary in nature if they are particles manufactured for product production in which case they are
referred to as nurdles or they can be secondary if the particles are degraded from microplastic debris (Lusher
et al., 2013; and Free et al., 2014). Plastic degradation occurs through physical, microbial and ultra-violet
radiation processes (Moore, 2008; Andrady, 2011; and Rummel, 2014) although very slowly. MPs are further
classified as fibers, fragments, films, beads or foams based on shape (Cole et al., 2013; Claessens et al., 2013;
Mathalon and Hill, 2014; and Hartline et al., 2016). Fibers originate mainly from plastic bags, fishing nets and
clothing (Claessens et al., 2013; and Hartline et al., 2016), while fragments often originate from plastics that do
not unfurl into filamentous threads such as molten plastics or plastic films, filters, and geo textiles (Cole
et al., 2011; and Claessens et al., 2013).

Due to their large surface area and hydrophobic nature, MPs adsorb a lot of Persistent Organic Particles
(POPs) and because of their minute size (1 µm-5 mm), they can be easily swallowed by a diversity of organisms
since they mimic prey particles and sediment grains (Hong et al., 2018). Research has shown that marine
invertebrates and vertebrates ingest MPs (Neves et al., 2015; Van Cauwenberghe et al., 2015; Devriese et al.,
2015; Li et al., 2016; Nelms et al., 2018; and Awour et al., 2020) with some such as crabs taking them in through
the gills (Wright et al., 2013; Setälä et al., 2014; Cole et al., 2015; Weiden and Cowie, 2016; Karlsson et al., 2017).
MPs transport POPs into marine organisms, as well as plastic additives, such as Bisphenol-A and nonylphenol,
which leach out into the organisms (Koelmans et al., 2014). Bioaccumulation and biomagnification of MPs to
higher trophic levels has also been reported (Farrell and Nelson, 2013; and Setälä et al., 2014).

MPs are therefore harmful to organisms along the food webs as well as the environment. For instance,
styrene in polystyrene is an endocrine disrupter, while polyester contains hazardous level of monomers
associated with respiratory irritation, cell mutation, and are toxic to aquatic environments (Lithner et al., 2011).
Polyethylene and polyamides (nylon) although thought to be benign, may absorb POPs from the environment
(Rochman et al., 2013) such as pesticides and polychlorinated biphenyls (PCB’s), known to disrupt immunity
and cell division (Lauby-Secretan et al., 2013; and Hable and Nguyen, 2013). MPs toxins in low density
polyethylene (LDPE) cause liver stress including: single cell glycogen depletion, necrosis, and fatty vacuolation
(Rochman et al., 2013). MPs have been known to cause inimical physiological effects, leading to a decrease in
feeding ability, energy accumulation, and reproduction for small-size organisms at lower trophic levels (Cole
et al., 2013; and Sussarellu et al., 2016). However, information on contamination of fish by MPs is not well
documented (Romeo et al., 2015) creating a knowledge gap, more so, no study has been done on contamination
of fish by MPs along the Kenya coast.

Owing to the toxic effects of microplastic contamination to organisms along the food webs and the ever-
increasing release of plastics into the ocean, it is important to understand the extent of the problem, to effectively
mitigate it. The main objectives of this study were therefore to; (a) assess the presence and abundance of MPs
in the gut, gills and muscles of five most common marine fish species from the creeks along the Kenya coast in
WIO. (b) characterize the MPs by shape and colour. Considering the importance of the marine trophic web, as
prey for big fish and food to humans, this study makes an important contribution to knowledge of MPs
occurrence in fishes in Kenyan inshore waters.

2. Materials and methods

2.1. Sampling sites

The study was carried out in two creeks in Mombasa County (Tudor, Port-Reitz) and one creek in Kilifi County
(Mida) along the Kenya Coast (Figure 1). The creeks are enclosed and surrounded by informal settlements,
highly populated villages, and manufacturing industries (Okuku et al., 2011, 2019; and Maritim et al., 2016),
hence may be prone to plastic pollution. The Kenya coastal region experiences two rainy seasons with two
maxima in May and October and an average mean annual rainfall of 1204 mm (Obiero and Onyando, 2013).
The region experiences fairly high average temperatures ranging between 26 and 32°C, a small diurnal range
of between 7 and 9°C (Obiero and Onyando, 2013). Port-Reitz creek receives freshwater from rivers Mwache,
Cha Shimba, and Mwambone while Tudor creek is fed by two main seasonal rivers; Kombeni and Tsalu which
arise from around Mariakani town, 32 km Northwest of Mombasa (Kitheka et al., 1999) (Figure 1a). Tudor creek
passes under Nyali Bridge and is bordered by Makupa causeway which dissects it into Tudor creek to the East
and Port-Reitz to the West (Kitheka et al., 1999) (Figure 1c). In port-Reitz Creek, fish samples were analyzed
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only from Makupa station due to limited availability of fish. Mida creek within Watamu Marine National Park
is a semi-pristine environment and was considered as a control (Figure 1b).

In Mida Creek two stations were sampled; that is, Dabaso and Kirepwe. In Tudor fish were sampled from
three stations; Fort Jesus, English Point and Mikindani while from Port Reitz only Makupa was sampled.

2.2. Sampling strategy
All institutional and national guidelines for the care and use of laboratory animals were followed. Sampling
was done in January/February 2018 (Jan 2018) during the dry period and in September 2018 (Sept 2018)
during the short rainy season to collect fish samples for microplastic extraction and analysis. Fish samples
were bought from the local fishers encountered at the sampling stations or the landing sites (Tudor, Port-Reitz
and Mida Creeks) and the number and species depended on availability in the catch. At each station, GPS
coordinates were recorded (Table 1) using a handheld GPS (version; Mitac mio168).

The fish were sorted according to species and placed into ziploc bags that were labeled and then placed in
cooler boxes with ice for transportation to the laboratory. In the laboratory, the fish were washed with distilled
water, and rinsed in 70% ethanol to get rid of any particle affixed to the body surface. The fish samples were
subdivided into three replicate groups of equal numbers based on species and location. Fish lengths (cm) and
weights (g) were measured to the nearest 0.1 mm and 0.1 g respectively (Karami et al., 2017). The samples were

Figure 1: Map of Kenya showing the study sites (a) Kenya Coastal region; (b) Mida Creek (Dabaso and

Kirepwe); (c) Mombasa Island with Tudor (Fort Jesus-FJ, English Point-Eng Point and Mikindani-Mik) and

Port-Reitz (Makupa-Mak) creeks
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wrapped in aluminum foil to avoid external contamination, placed in ziplocs and stored at –40°C until further
analyses.

2.3. Processing and analysis of fish samples
Sample processing and analysis were done at the Kenya Marine and Fisheries Research Institute (KMFRI) and
the University of Nairobi (UON) Laboratories. The fins were chopped off and discarded. The fish were dissected
by making a cut just below the throat and extending the cut down the ventral side to the anal pore (Gupta and
Mullins, 2010). The gut, the gills and the rest of the fish were separated into different samples, weighed,
chopped into smaller pieces and digested using 10% KOH (1 g, 5 ml) (Foekema et al., 2013; Eriksen et al., 2013;
Rochman et al., 2015; Dehaut et al., 2016; Kühn et al., 2017; and Thiele et al., 2019) at 60°C for 14 h (modified
protocol). Fins and bones did not digest completely and some organic matter was evident on samples of
R. kanagurta and L. vaigiensis. Such samples were digested in 55% Nitric acid (HNO3) solution (10mL/g) for a
further five minutes to remove any organic material (Collard et al., 2015). Acid digestion was done in a fume
cupboard, in glass jars covered with watch glasses. The digestates were diluted by adding 100 mL of distilled
water to protect the filtration equipment and ease floatation (Collard et al., 2015). The microplastic particles
were density separated by adding filtered supersaturated Sodium Chloride (NaCl) solution (1.35g cm-3), in the
ratio of 1: 3 (sample: salt solution), and left to settle overnight (12 h) (Rochman et al., 2015; and Kühn et al., 2017
modified protocol).  The supernatant was filtered by vacuum pump filtration over 0.8 µm membrane filters. The
filters with particles were placed in covered glass petri-dishes, and then dried at 40°C for 12 h before being
examined under a dissecting microscope at X40 magnification (Claessens et al., 2013; and Lusher et al., 2013).
Suspected MPs were confirmed using the hot needle test (De Witte et al., 2014; and Devries et al., 2015), and
further characterization done. The MPs were characterized by shape and categorized as fiber, fragment or film
and their color noted.

2.4. Quality control
Owing to the very light weight and mobility of MPs, caution was observed while analyzing samples to guarantee
no contamination of samples by particles from the air. Sample processing and analyses were done in a clean
room with no air flow (windows and doors shut) and limited human traffic. Samples were covered with
aluminum foil and glass covers whenever not in use, while glassware and metal equipment were used. All
equipment was rinsed with deionized water prior to use. Working surfaces were thoroughly cleaned using
70% ethanol three times and allowed to dry before use (Hidalgo-Ruz et al., 2012). Hand gloves were used and
cotton laboratory coats were worn throughout. Long term blanks were measured (1 blank per sample analysis).
A moistened filter paper (30 mm diameter, Whatman No. 1) (Lusher et al., 2017) per sample was placed in a
petri dish and left exposed during the processing and analysis period. A series of blanks set during the
analyses process were examined for contamination.

2.5. Data analysis
Shapiro-Wilk’s test was used to test data normality and all data was found to be normally distributed after log
transformation. Species abundance and the mean concentrations of MPs in species during the different seasons
were compared using one way ANOVA and the Turkey’s post hoc test separated the means. One way ANOVA

Table 1: Sites, stations and GPS coordinates

Site Station Southing Easting

Mikindani (Mik) 4° 41´´ 51´ 39° 21´´ 12´

English Point (Eng point) 4° 1´´34.7´ 39° 38´´47.5´

Tudor Fort Jesus (FJ) 4° 1´´29´ 39° 67´´ 96´

Port-Reitz Makupa (Mak) 4° 2´´16.5´ 39° 38´’ 50.1´

Kirepwe 3° 3´´ 23.5´ 39° 48´´ 47´

Mida Dabaso 3° 20´´39.8´ 39° 59.1´´2.8´ 
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was also used to compare the concentration of MPs and the weight of tissues followed by a Turkey’s test. A
spearman’s correlation was done to determine the relationship between the mean microplastic concentration
and mean lengths and weights of the organisms. Species pairwise comparisons were done using Turkey’s test.
Fish data from the two seasons was combined for von Bertalanffy growth curves.

The assessment of MPs in the guts, gills and muscles was done in accordance with procedure and ethical
guidelines for animal experiments in the University of Nairobi and KMFRI.

3. Results

3.1. Fish distribution and size

A total of 225 individuals from five different species were obtained, most of which are benthic (Nelson, 1994;
Sheaves, 2006; Lieske and Myers, 2004; and Froese and Pauly, 2020), and included Geres oyena (Forsskal,
1775), Acanthopagrus berda (Forsskal, 1775) and Terapon jarbua (Forsskal, 1775). Gerres oyena lives in coastal
waters and is a carnivore (Cyrus and Blaber, 1982), Acanthopagrus berda (Forsskal, 1775) is predominantly
marine (Nelson, 1994; and Sheaves, 2006) with some living in euryhaline estuarine environments (Leu and
Chou, 1996), and is an omnivore (Nasir, 2000; and Setälä et al., 2018), Leptoscarus vaigiensis (Quay & Galmard,
1824) is reef associated grazing fish (Locham et al., 2015) while, Rastrelliger kanagurta (Cuvier 1816) is pelagic
and omnivore (Collette, 2001).

During the first sampling all five species were encountered and were represented by more individuals than
during the second sampling. In the second sampling only four species were encountered (because L. vaigiensis
that had been encountered at English point was not encountered again) and all species were represented by
fewer individuals.

Mida and Tudor creeks had a higher variety of fish species compared to Port-Reitz. In Mida this was
mainly because of the high diversity encountered in Dabaso station while in Tudor all three stations sampled
had different species. Gerres oyena was the most predominant species (91 individuals representing 44%) and
occurred in all stations except Fort Jesus and English Point (Table 2). Data on species diversity from the two
sampling campaigns did not vary significantly (ANOVA: F = 0.77, df = 1, p = 0.790). Although G. oyena was
dominant, it did not occur in Port-Reitz Creek during the second sampling campaign.

Table 2: Occurrence of different fish species in different sites and stations

Site Station Species Jan 2018 Sept 2018

Mida Dabaso G. Oyena - 1 6

A. Berda 3 1 9

T. Jarbua 3 7 6

Kirepwe G. Oyena 1 5 -

Port-Reitz Makupa G. Oyena 1 1 -

Tudor Mikindani G. Oyena 3 1 1 8

Fort Jesus R. Kanagurta 3 5 6

  English Point L. Vaigiensis 1 0 -

The average (± SE) weights and lengths of the different fish species showed wide ranges (Table 3) with the
greatest mean weight range being observed in G. oyena perhaps because of its occurrence in different stations
and seasons. The heaviest G. oyena individuals were encountered in Makupa followed by those from Dabaso
while Mikindani had the smallest individuals. L. vaigiensis individuals were as heavy as the heaviest G. oyena
individuals from Makupa while A. berda had the smallest individuals.
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3.2 Fish growth and Von Bertalanffy growth curves
The length-weight relationship of the fish samples varied widely among species (Table 4).

Table 4: Length-weight Von Bertalanffy growth curve parameters for the different fish species

Species Station a-value b-value R2 n Nonlinear equation

G. oyena Dabaso 3.1266 0.3675 0.4962 1 7 W = 3.1266L0.3675

G. oyena Kirepwe 4.2102 0.3275 0.8813 1 6 W = 4.202L0.3275

G. oyena Makupa 6.3678 0.3042 0.9796 1 2 W = 6.3678L0.3042

G. oyena Mikindani 11.631 0.0964 0.0127 4 6 W = 11.631L0.0964

R. kanagurta Fort Jesus 1.5434 1.3915 0.393 4 1 W = 1.5434L1.3915

A. berda Dabaso 0.0107 3.054 0.9143 4 0 W = 0.0107L3.054

T. jarbua Dabaso 0.1226 2.0467 0.4172 4 3 W = 0.1226L2.0467

L. vaigiensis English Point 0 .0273 2.8453 0.9137 1 0 W = 0.0273L2.8453

Note: Y-intercept (a-value), slope of the curve (b-value) and the coefficient of determination (R2).

The estimated a and b constants (Table 4) for G. oyena varied widely from those obtained by Kanak Tachihara
(2006) who calculated the relationship as W = 0.0035L2.89 for fish from Okinawa Island Japan, El Agamy (1988)
W= 0.00812L3.13 for fish from the Arabian gulf, and Letourneur et al. (1998) W= 0.012L3.232   for fish from New
Caledonia. The mean b-value was low as all fish species except A. berda had negative allometry, hence did not
obey the cubic law (Wootton, 2012).  The growth of weight relative to length for A. berda was positively
allometric showing that weight of fish increases lightly more than the cube of its length. The length-weight
data fitted to the Von Bertalanffy growth curve model produced varied growth curves for the different fish
species (Figure 2).

3.3. Overall mean concentration (g-1) of MPs in different fish species
The overall (±SE) mean MPs concentration in different species were below 1 microplastic per gram of tissue
(Table 5) and were significantly different for R. kanagurta, T. jarbua and A. berda (p < 0.05) between the first and
second sampling campaigns.

Table 3: Mean (± SE) lengths and weights of fish of different species per site and station

                        Jan 2018                      Sept 2018
Site Station Species

Av. Bw (g) Av. TL (cm) Av. Bw (g) Av. TL (cm)

Mida Dabaso G. oyena - - 79.9 ± 0.1 15.6 ± 0.02

Dabaso A. berda 11.9 ± 0.1 9.7 ± 0.03 74.3 ± 0.01 9.8 ± 0.01

Dabaso T. jarbua 16.3 ± 0.17 10.8 ± 0.01 74.8 ± 0.1 10.2 ± 0.01

Kirepwe G. oyena 50.4 ± 0.04 14.9 ± 0.1 – –

Port-Reitz Makupa G. oyena 143.8 ± 1.4 28.2 ± 0.06 – –

Tudor Mikindani G. oyena 35.6 ± 0.7 12.8 ± 0.2 28.6 ± 0.01 19.4 ± 0.03

Fort Jesus R. kanagurta 118.6 ± 0.15 22.3 ± 0.08 32.5 ± 0.06 10.3 ± 0.1

English Point L. vaigiensis 143.1 ± 0.74 20 ± 0.04 – –
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Figure 2: Von Bertalanffy growth curves fitted to the length-weight data for (a) Gerres oyena, (b) Rastrelliger

kanagurta, (c)Terapon jarbua, (d) Acanthopagrus berda, (e) Leptoscarus vaigiensis  from the creeks along the

Kenya coast
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Table 5: Concentration of MPs (x ± SE) in the different species in different creeks and stations

Site Station Species Jan 2018 Sept 2018 Mean conc

Mida Dabaso G. oyena - 0.18 ± 0.041

A. berda 0.16 ± 0.003 0.52 ± 0.01 0.480 ± 0.058

T. jarbua 0.15 ± 0.008 0.31 ± 0.01  0.240 ± 0.04

Kirepwe G. oyena 0.041 ± 0.032 -

Port-Reitz Makupa G. oyena 0.1 ± 0.034 -

Tudor Mikindani G. oyena 0.2 ± 0.02 0.21 ± 0.011 0.209 ± 0.051

Fort Jesus R. kanagurta 0.07 ± 0.01 0.16 ± 0.004 0.132 ± 0.011

English Point L. vaigiensis 0.04 ± 0.001 -

Overall, the mean concentration of MPs showed significant difference (F = 12.69, df = 11, p < 0.01) among
species. Acanthopagrus berda from Mida had the highest mean concentration while G. oyena from Mida and L.
vaigiensis from, Tudor had the lowest mean concentration of MPs per gram tissue.

Apairwise comparison in MPs concentration between different stations but same sampling period, and
same species but different sampling seasons produced varied results (Table 6).

Table 6: Pairwise comparison of Mean microplastic concentration (x ± SE) in fish species

Stations and seasons Mean SE mean   t-value df p

Same species (Gerres oyena)

1 Jan-Sept Mik (same stn; diff sampling) 0.014 0.031 0.45 2 0.70

2 Mik-Mak Jan (diff stn; same sampling) 0.169 0.020 8.51 2 0.01

3 Mik-Kir Jan (diff stns; same sampling) 0.159 0.029 5.55 2 0.03

4 Mik-Dab Sept (diff stn; same sampling) 0.033 0.045 0.72 2 0.54

5 Kir Jan-Dab Sept (diff stns; diff sampling) 0.141 0.056 2.50 2 0.13

Other species

6 R. kanagurta Jan -Sept (FJ) (diff sampling) 0.408 0.153 7.62 2 0.012

7 A. berda Jan-Sept (Dab) (diff sampling) 0.177 0.060 6.93 2 0.039

8 T.jarbua Jan-Sept (Dab) (diff sampling) 0.036 0.012 5.98 2 0.040

Significant differences (p < 0.05) were observed in the concentration of MPs in G. oyena between different
stations during the same sampling season some cases (Table 6) .There was no significant difference in the
concentration of MPs in G. oyena from Mikindani during the different sampling seasons (t = 0.45, df = 2,
p = 0.07). on the other hand significant differences (p < 0.05) were observed in the concentration of MPs in all
the other fish species between same species and different sampling seasons.

3.4. Concentration of MPs in different fish species per gram tissue
MPs were observed in all the fish sampled (Figure 3) with the benthic fish like A. berda (0.480 ± 0.058) G. oyena
() and T. jarbua (0.240 ± 0.04) having higher mean concentration compared to the pelagic, R. kanagurta (0.132 ±
0.011) and reef fish L. vaigiensis (0.04 ± 0.001), (Figure 3) and the differences were significant (Chisq4 =5504,
p = < 0.01).
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A  correlation between MPs concentration and body length and weight showed that all the fish species
except R. kanagurta had increased MPs concentration with increase in body length (Figure 4a), while G. oyena
and L. vaigiensis showed a decease in MPs concentration with increase in body weight (Figure 4b).

Figure 3: Mean (± SE) microplastics concentrations for the different fish species with standard error bars

(MPs per gram)

Figure 4: Relationship between (a) MPs concentration and body length and (b) MPs concentration and body

weight in the different species
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Figure 4 (Cont.)

3.5. Mean (± SE) concentration of MPs in different organ tissues in different species
All the fish species contained MPs in their guts, gills and body tissues (Table 7). There were significant
differences (F = 22.725, df = 20, p = 0.002) in mean microplastic concentration in the guts between species. Guts
of A. berda (7.41 ± 0.42) had significantly higher mean MPs concentration, compared to G. oyena, R. Kanagurta,
T. jarbua and L. vaigiensis but the latter three were not significantly different (F = 1.549, df = 20, p = 0.211)
(Table 7.  With respect to the gills, A. berda and G. oyena had significantly higher mean concentrations of MPs
per gram tissue compared to other species but the two were not significantly different (p > 0.05). Generally, the

Table 7: Mean (x ± SE) concentration of microplastics in various organs per gram tissue of the different

fish species

                       Microplastics in organs g-1

Site Station Species
MPs g-1 Guts Gills   Body

Mida Dabaso G. oyena 0.181 ± 0.041 *3.557 ± 0.15 *2.599 ± o.23   0.042 ± 0.001

Mida Kirepwe G. oyena 0.041 ± 0.032 1.398 ± 0.05 1.339 ± 0.07   0.004 ± 0.001

Tudor Mikindani G. oyena 0.209 ± 0.051 1.43 ± 0.02 0.172 ± 0.05  0.015 ± 0.001

Port-Reitz Makupa G. oyena 0.1 ± 0.034 0.94 ± 0.01 1.92 ± 0.12  0.02 ± 0.0

Tudor Fort Jesus R. Kanagurta 0.132 ± 0.011 1.44 ± 0.03 0.74 ± 0.01  0.01 ± 0.01

Tudor English Point L. vaigiensis 0.04 ± 0.001 0.56 ± 0.1 0.45 ± 0.1  0.01 ± 0.01

Mida Dabaso A. berda 0.48 ± 0.058 *7.41 ± 0.42 *2.82 ± 0.08 0.081 ± 0.01

Mida Dabaso T. jarbua 0.240 ± 0.04 1.38 ± 0.02 1.97 ± 0.025 0.031 ± 0.01

Note: Asterix indicates high concentration of microplastics.
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mean concentration of MPs in the rest of the fish body were lower than 0.1 MPs g-1 across all species and
stations.

Based on station, the guts of G. oyena from Dabaso had a significantly higher (F = 12.692, df = 7, p < 0.05)
mean concentration (g-1) of MPs compared to those from Kirepwe, Mikindani and Makupa but the latter three
were not significantly different (p > 0.05). Similarly, the gills of G. oyena from Dabaso had a significantly higher
mean concentration of MPs (g-1) (F =13.142, df = 7, p = 0.001) compared to other stations (Table 7).

3.6. Microplastic types by shape and colour in the tissues of the different fish species
Most of the MPs recovered from the fish were fibers (91.4%) and a small percentage (8.6%) were fragments
(Figure 4). Similarly, significantly higher (F = 22.721, df = 20, p < 0.001) proportions of fibers were observed in
fish gills, compared to fibers in guts, and in fish body (Figure 5).

In addition, clear balls of fibers were observed in the guts of some fish of R. kanagurta and G. oyena species
(Figure 6).

Figure 6: Examples of microplastic types by shape recovered from fish tissues: (a) Blue fragment from the gut

of R. kanagurta of Fort Jesus (b) Red, blue and black tangled fibers from the gills of G. oyena of Makupa
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Figure 5: Mean percentage concentration of microplastic shapes observed in organs of different fish species
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The majority of the MPs were blue (36.4%) and black (34.2%) followed by white (18.4%), green (6.5%), red
3.3%), and purple (0.9%) (Figure 7).

Figure 7: Mean percentage concentration of microplastic colors observed in different fish species from the

creeks along the Kenya coast
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4. Discussion
Kosore et al. (2018), Awuor et al. (2020) and Kerubo et al. (2020 and 2021) distinctly show that MPs are abundant
in the Kenya’s marine environments and are interacting with zooplankton and macro-invertebrates by way of
ingestion. Fish are economically important as human food (Barboza, et al., 2018). Some of the risks associated
with marine fish are the incorporation of MPs and adsorbed chemicals into the food web through trophic
transfer (Setälä et al., 2018). Ingestion of MPs increases toxicity of plastic chemicals such as nonylphenols,
bisphenol A and antioxidants in the organisms through leaching (Hermabessiere et al., 2017). It is therefore
imperative to assess the interaction of MPs with marine fish, as a potential risk to humans. The study focused
on the sites around Mombasa due to the rapid increase in human population and high solid waste from
tourism and industrial sectors (Okuku, 2019). MPs are present everywhere including Dabaso within Watamu
Marine National Park, a protected area expected to be free from microplastic contamination (Kerubo et al., 2020
and 2021).

Growth in fish is isometric if body weight increases with increase in total body length (b = 3), positively
allometric if the b-value is greater than three and negatively allometric if the b-value is far less than 3 (Ricker,
1975; and Wootton, 2012). Based on Fish Base data, different fish species attain maturity at different body
lengths with G. oyena attaining maturity at an average total body length of 22 cm (Roux et al., 1986), T. jarbua 13
cm (Lieske and Myers, 1994), A. berda 20-22 cm (Smith and Smith, 1986), R. kanagurta 19.9 cm (Sommer et al.,
1996) and L. vaigiensis at 16.5-18.4 cm total body length for fish in parks and reserves and attains a maximum
body length of 35 cm (Randall, 1986). In this study therefore, only G. oyena, from Makupa could be considered
mature while the rest of the fish sampled were immature.

The length-weight relationship gave a good fit to the length and weight of A. berda Von Bertalanffy growth
curve (James et al., 2003; and Ontomwa et al., 2018) while data for the length-weight relationship for fish of other
species did not. The length-weight relationships for A. berda, indicates isometric allometry , an indication that the
species had homogenous groups in their populations with body weights varying independently with the cube
of the total length. The high coefficient of determination implied proportional increase in weight and length.
These results affirm earlier research on A. berda from the North Coast of Kenya, (W = 0.O191L2.988) with a coefficient
determination (R2 = 0.9676) (Anam et al., 2019) and from Shimoni artisanal fishery, Kenya (Ontomwa et al., 2018).
The length-weight relationship of A. berda could have influenced microplastic ingestion during feeding. Isometric
growth could be attributed to the phenotype of the species, condition of the fish, the environment and food
availability (Ontomwa et al., 2018; and Anam et al., 2019) which were not part of the study scope.
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The length-weight relationship for G. oyena and L. vaingiesis imply positive correlation and negative allometric
growth while the length-weight relationships for R. kanagurta, and T. jarbua indicate negative correlation and
negative allometric growth patterns. Negative allometry indicates that the species had heterogenous groups
with body weights varying differently with the cube of total length.  Such growth could be attributed to feeding
and spawning biological aspects which have much impact on the length- weight relationships. However, this
was not within the scope of the research. These results contrast previous research results for G. oyena from the
Gulf of Suez, W= 0.094L3.11 (Saber et al., 2020), and from Caledonia (W =  0.0120 L3.232) (Letourneur et al., 1998)
but agree with results for G. oyena from Okinawa Island Southern Japan, W = 0.035L2.89 (Kanak and Tachihira,
2006), T. jarbua from Mindano, Philippines, W= 0.0006L2.8484 (Fortaleza et al., 2019) and L. vaigiensis from
Shimoni artisanal Fishery, Kenya, W = 0.0000129L2.3 (Ontomwa et al., 2018), showing that length of fish
increased more than weight. The results also contrast results of R. kanagurta from Mangalore India, W=
0.0045L3.2234 (Hulkot et al., 2013), which indicate positive correlation and allometry. The negative allometric
growth could be attributed to several factors including; fullness of the stomach probably by MPs (own
observation), insufficient feeding, age, sex, health condition of the fish, poor food quality and availability, low
salinities and poor habitat conditions (Sarre and Potter, 2000; and Froese, 2006).

 This study established that fish within the Creeks along the Kenya coast are contaminated with MPs,
including those from Mida Creek expected to be free of microplastic contamination. Geres oyena was the most
abundant and widespread species. This could be due to it probably being the most well adapted for survival
or other species were depleted by the time of sampling.

Significant variations in microplastic concentrations among species could be explained by differences in
habitats and feeding behaviour that affect ingestion of MPs. For example, A. berda is demersal and feeds on
benthic invertebrates mainly barnacles, crabs and oysters, known to ingest and accumulate MPs (Neves et al.,
2015; Li et al., 2016; Nelms et al., 2018; and Awuor, 2020) hence the high MPs in the species. Geres oyena is
demersal inhabiting inshore areas and feeds on small organisms and benthic invertebrates living in sandy
bottoms (Lieske and Myers, 2004; and Froese and Pauly, 2020), while T. jarbua is dermersal feeding mainly on
white (Paneaus indica) and brown (Paneaus monoceros) shrimps and on small fishes which may accumulate MPs
and pass them on to a higher trophic predator. Rastrelliger kanagurta is pelagic and omnivore, feeding on algal
material and small invertebrates (Collette, 2001), while L. vaigiensis, is pelagic, reef associated inhabiting
seagrass areas and is herbivorous feeding on sea grasses and algae (Sommer, 1996; Locham et al., 2015; and
Froese and Pauly, 2017). MPs are likely to arrive into the coastal environment through rivers and may have
high concentration in the surface waters (Kerubo et al., 2020) yet pelagic fish tend to accumulate much less
compared to the demersal fish.

Small invertebrates accumulate MPs passing them up trophic levels, thereby increasing MPs in higher
trophic levels (GESAMP, 2016) as was the case with A. berda and G. oyena. The high contamination with MPs
of A. berda from Dabaso both in the gut and gills could not be explained as it was not the site with the highest
MPs concentration in the surface water and the sediments (Kerubo et al., 2020 and 2021) although Awuor et al.
(2020) found that MPs concentrations in the invertebrates in Dabaso were comparable to other sites along the
Kenya Coast On the contrary, Mikindani had recorded relatively high MPs in the sediments (Kerubo et al.,
2021) and yet, G. oyena population from that site had not accumulated as high MPs in the gut and gills as was
observed in the population from Dabaso. This suggests that several factors playing together influence MPs
contamination in fish and not just the level of contamination of the environment.

Leptoscarus vaigiensis from English Point had the lowest microplastic concentrations in the gut and gills
which could be as a result of the fish not spending much time in the creeks being reef associated species
(Locham et al., 2015) and only occasionally venturing into the creeks (Locham et al., 2015).  This could imply
that the reefs are less contaminated with MPs compared to the creeks. Our results are consistent with earlier
research where similar concentrations have been observed in the digestive tracts of the Mediterranean lantern
fishes which are both  shallow and deeer -living but pelagic feedres, mainly feeding on mesopelagic fish
(Romeo et al., 2016) and the South African catfish which is omnivore with carnivorous tendency (Silva-Canti
et al., 2017), but were lower than those obtained in the gastrointestinal tracts of fish from other regions of the
world, such as crevalle jack (Caranix hippos, (Froese and Pauly, 2017). The relatively high microplastic
concentrations in both juvenile and mature fish samples indicates that size or age does not influence microplastic
ingestion in fish.
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Microplastic concentrations were significantly lower in fish body tissues but significantly higher in the
guts and gills of all the fish species. The low microplastic concentration in the fish body could be attributed to
the total weight due to inclusion of bones and fins. The high concentration of MPs in the guts and gills of A.
berda and G. oyena from Dabaso could imply transfer of the contaminants to humans in high concentrations if
the fish is consumed whole. For example, in this study, consuming 1 kg whole A. berda from Dabaso could
transfer as much as 1031 ± 0.42 MPs while the same quantity of gutted fish with gills discarded would transfer
about 81 ± 0.02 MPs particles only.

MPs were mainly fibers agreeing with earlier research by Nelms et al. (2018), reporting similar results in the
Atlantic Mackerel with fibers (72%) being higher than fragments (Nelms et al., 2018), as well as in the digestive
tracts of the South African catfish (Silva-Canti et al., 2017).   Fibers made up 88% of the MPs in five fish species
in China (Jabeen et al. 2017), 96% of MPs in fish from Texas (Fazey and Ryan, 2016) and were predominant in
the stomachs of Mediterranean lantern fishes (Romeo et al., 2016) among others. The occurrence of clear balls
of fibers in guts of some fish is consistent with earlier research reports of bunched balls of MPs in the digestive
tract of the Lates niloticus (Linnaeus, 1758) and the Oreochromis niloticus. (Linnaeus, 1758) in Lake Victoria
(Biginagwa et al., 2016).

The high percentage of fibers suggests waste water treatment, domestic waste water, fishing ropes and
nets, degraded plastic bags, synthetic textiles and tourism activities could be the main sources of MPs (Khan
et al., 2018; and Graca et al., 2017). The presence of film fragments suggests light weight plastics could be the
source. It is worthwhile to note that the source of MPs directly influences their concentration in water bodies
and subsequently fishes (Free et al., 2014).

Most of the microplastic particles from fish in this study were blue and black. Earlier research reported red,
blue, and white elongated fibers in the Gulf of Mexico with no proportions (Phillips and Bonner, 2015).
Variations in microplastic particle colours implied multiple sources of the pollutants. Further investigation is
required to establish the source of MPs in the demersal and pelagic fishes of the creeks along the Kenya Coast
and the subsequent impact on human health.

5. Conclusion
The study established that both demersal and pelagic fish ingest MPs and body size or age did not influence
their ingestion.

Growth of the fish species in the study deviated from the norm in literature for the same species which
could probably suggest that fish are affected by MPs in the aquatic environment. Although all the fish species
had MPs in the guts, gills and the rest of the body, fish body had significantly lower values than the gut and
gills. But the fact that MPs are found in the fish body tissue is alarming as it demonstrates gut tissue or gill
tissue transfer of MPs.  In retrospect, this study shows that common fish in the creeks along the Kenya coast
ingesting MPs could pose a risk to humans especially if they are consumed whole.  All fish regardless of size
should be gutted and gills removed before being processed or cooked for human consumption.

MPs of different shapes and colours were ingested most of which were blue indicating multiple sources of
the pollutants. High microplastic concentrations in demersal and pelagic fish indicates that MPs in the creeks
along the Kenya coast accumulate in sediments and the water column and differences in feeding modes
influence ingestion.

This study has implications for fishery and wildlife management. Understanding of the results could
benefit the National and International Governments, environmental advocacy groups such as NEMA, and
Intergovernmental organizations.

This study supports the February 2017 ban on production, and use of light weight plastics by the Kenya
government as there were both fiber and film particles found in the study.

6. Recommendations
Research is needed to determine the source of MPs. It is the researchers’ opinion that based on this work all fish
regardless of size should be gutted and gills removed before being processed or cooked for human consumption.

The information of the present research study along with research into the effects of plastic contamination
in the Kenyan environment is enough to compel more effective action and mitigation for plastic waste
management to help reduce the microplastic numbers in the oceans.
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