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Abstract
Global rice production is needed to be improved for ensuring food security in
the coming decades. Prospective utilization of beneficial bacteria can be attributed
as sustainable agricultural practices for the enhancement of the physiology of
rice plants. This review focuses on and amalgamates the experimental findings
where bacteria can assist the rice plant for better phenology. Bacteria in the
rhizosphere are abundant and diverse compared to the bacteria in the endosphere
and phyllosphere region of rice plants. Bacteria derived phytohormones can be
utilized by rice plants to enhance phytohormone signaling for beneficiary
purposes. Salicylic Acid (SA) may induce Systemic Acquired Resistance (SAR) to
the rice plant to eradicate pathogen attack. Moreover, bacteria modulated
Jasmonic Acid (JA)/Ethylene concentrations can assure Induced Systemic
Resistance (ISR) for plant immunity. Some plant growth promotional activities
of bacteria such as Biological Nitrogen Fixation (BNF), siderophore production,
mineral solubilization are addressed in this worthwhile discussion. Abiotic
stresses include drought, salinity, high and low temperatures, affects severe loss
in rice production annually. The utilization of plant growth-promoting bacteria
is the well-established solution for evading abiotic stresses by initiating or
inhibiting various signaling processes as well as improvement of the yield of
rice.

Keywords: Abiotic stress, Bacteria diversity, Biotic stress, ISR, SAR, Yield

1. Introduction
In recent years, numerous studies target the response of biodiversity due to climate change, which has become
one of the most concerning points of the current century. Experiments conducted at the beginning of the 21st

century have a crucial role in alerting scientists and ecologists to figure out future risks and potential strategies
to minimize the impacts of climate change on biodiversity (Bellard et al., 2012). Moreover, the population
outburst has led to the disturbance of the homeostatic nature of the environment. Biodiversity reduction has
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become a major issue for food scarcity, and the food production should be increased significantly to meet the
demand of the mammoth population worldwide (Tkacz and Poole, 2015; Sarkar et al., 2018).

Rice (Oryza Sativa) is considered the most crucial cereal crop and staple food for more than half of the
world’s total population (Habibi et al., 2019). Global demand for rice is estimated to enhance from 439 million
tons in 2010 to 555 million tons in 2035. If the world market is to be stabilized for the billions of consumers,
global rice yield should rise faster. According to the Food and Agriculture Organization (FAO), currently
38.7% of the world’s land area is utilized as agricultural land, among them 28.43% of the land is arable (Gouda
et al., 2018). But environmental damage is heightening as a consequence of rapid urbanization and
industrialization, resulting in the farmable land to rapidly decrease every year (Goswami and Deka, 2020;
Gouda et al., 2018).

Since, the size of arable land can’t be expanded, the pressure for the rice over-production is forwarded to
wide-ranged utilization of chemical fertilizers as the plant nutrient which generally pose an environmental
hazard for arable lands ( de Souza et al., 2015). In the last few years, the stagnation and declining trends in
yields in the rice cropping system have been reported to be mainly due to over-exploitation and mismanagement
of soils threatening the sustainability issue of the rice cropping management system in the world (Bhatt et al.,
2016). In other cases, deleterious abiotic stresses (like high salinity, drought, and high and low temperature,
etc.) and biotic stresses (infections caused by virus, pathogenic bacteria, fungi, etc.) result in a considerable
decrease in quality and quantity of rice production (Goswami and Deka, 2020; Chen et al., 2020).

Researchers have proposed various techniques till date for improving agriculture such as sustainable
management practices, agricultural intensification, genetically engineered crops, and use of PGPM (Plant
Growth-Promoting Microbe) as bio-fertilizers (Gouda et al., 2018). PGPM is consortium of microbial communities
which includes bacteria, fungi, protozoa, archaea, etc. Plant microbiomes could play a lot of beneficial role to
the host plants such as enhance the capacity of plants to acquire nutrients from the soil, reduce the excessive
utilization of chemical fertilizers, modulates the level of hormone within the plant tissues, improve growth,
health and production as well as adaptive advantage to the plants (Orozco-Mosqueda et al., 2018). Several
previous studies have shown that microbiome diversity enhances biological control of host plants against
diseases through Induced Systemic Resistance (ISR) and relieve abiotic stresses by modifying plant endogenous
hormone and relative protein expression (Liu et al., 2018).

Among PGPM, this review focuses on the evaluation of Plant Growth Promoting Bacteria (PGPB) for the
alleviation of abiotic and biotic stresses as well as the promotion of rice yield with a brief overview of how the
bacterial diversity modulates the mechanism of survival capacity of rice under several changing climate
conditions. As the diversity and composition of soil bacteria influence a wide range of ecosystem processes,
many efforts have been directed toward understanding the microbial biogeography to the rice (Imchen et al.,
2019). So, in this review, we are trying to amalgamate the comprehensive information on the utilization of
beneficial PGPB for obtaining healthier and more productive rice plants even under different abiotic and biotic
stresses.

2. What are PGPB? their classification
The bacteria populations colonize into or outside of the host plants and augment the growth of the plants
through different direct and indirect mechanisms are termed as PGPB (Grover et al., 2011). The majority of the
PGPB colonize into the root surface and move in space between root hairs, some are found in the root exudates,
and some enter into the root tissues. Root exudates are an integral part of rhizosphere signaling events and
regulate communication of beneficial plant-microbe interactions. Plant roots allow the entry and/or adherence
of PGPB. Phenols, flavonoids, and organic acids secreted by roots have been known to act as chemical signals
for bacterial colonization. PGPB can be classified into two main categories (i) Extracellular PGPB, which
inhabit on the plant (Rhizoplane, the surface of the plant root and/or stem are generally termed as Associative/
Phyllospheric bacteria) or outside the plant (Rhizosphere, a narrow zone of soil where microbes are found in
high concentrations, known as Rhizobacteria), (ii) Intracellular PGPB which inhabit inside the plant
(Endosphere, the internal regions of plant tissues, known as Endophyte) (Gouda et al., 2018; Ilangumaran and
Smith, 2017).
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3. Regional diversity and abundance of PGPB throughout rice life cycle
The patterns of bacterial communities in the rice rhizosphere regions are shaped by geographic location of
host plant, physicochemical properties of soil, and rice genotype/phenotypic plasticity (Santos-Medellín et
al., 2017). Modification of any described condition can alter soil environments for microbial growth,
diversification and proliferation (Souza et al., 2013). It is essential to study microbial diversity and their
dynamic relationship with rice plant for the demonstration of successful plant-microbe interaction to enhance
crop performance (Figure 01) (Edwards et al., 2018).

3.1. Bacteria diversity at rhizosphere region
During the rice life cycle, root exudates pose dynamic changes of microbial flora (Edwards et al., 2015). To
understand soil microbial ecosystems and complex microbial assemblages of a rice cropping system, bacterial
16S rRNA genes (hypervariable regions) were selected for analyzing bacterial Operational Taxonomic Units
(OTUs) (Wang et al., 2019; Wang et al., 2016). A plethora of high-throughput sequencing-based studies were
analyzed to understand the exact taxonomic information of bacterial communities in the rice rhizosphere. The
presence of beneficial bacterial community is largely occupied by Proteobacteria (mainly Alpha-, Beta- and Delta-
proteobacteria classes), Firmicutes, Bacteroidetes, Verrucomicrobia, Actinobacteria, Chloroflexi, and several other
phyla (Jha et al., 2020). Undoubtedly, the bacterial community composition and diversity in the rice rhizosphere
is distinct from that in the rhizosphere of other plants (i.e., maize, soybean, potato, populus and arabidopsis)
which has been proved by some selected studies. Among them, the rice rhizosphere is found to be markedly
enriched significantly with Delta-proteobacteria class while compared with rhizosphere region of other crop
plants. Moreover, Alpha- and Beta-proteobacteria classes are also enriched in the rice rhizosphere (Raaijmakers
and Mazzola, 2012).

3.2. Bacteria diversity at endosphere region
Rice root endosphere is enriched with Beta-proteobacteria and Delta-proteobacteria classes compared to the bulk
soil and Proteobacteria dominated the rice endosphere microbiota which covered 71% and 87% of the total
endosphere bacterial OTUs of the two rice cultivars (Edwards et al., 2018; Moronta-Barrios et al., 2018). Walitang
et al. (2017) coined a crucial study on 6 South Korean rice cultivars to assess bacterial endophytic community
in the rice seeds. The 16S rRNA gene identification of these cultures revealed that major endophytes in the rice
seeds belong to the classes Alpha-proteobacteria, Beta-proteobacteria, Gamma-proteobacteria, Actinobacteria and
Firmicutes. However, rice seeds act as a vector for transmission of these rice associated endophytes colonizing
different parts of the rice plants. Edwards et al. (2015) also reported that the endosphere microbiota reaches a
steady state over a specific time period and their establishment in the endosphere region of rice plant is
depended on the growth stage of rice plant during its’ whole life cycle (Edwards et al., 2015).

Figure 1: Bacterial diversity in rice: Bacterial community living in the rice plant can be grouped into three

types: rhizosphere, endosphere and phyllosphere, dominance phyla in these three regions of rice plants
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3.3. Bacteria diversity at phyllosphere region
Analysis of bacterial community composition in the rice phyllosphere revealed the dominance of Alpha-
proteobacteria (35%) and Actinobacteria (38%) in the phyllosphere of rice cultivar IR-72 (according to 16S rRNA
gene-based community analyses) (Knief et al., 2012). Moreover, Bacteroidetes, Firmicutes, Beta- and Gamma-
proteobacteria contributed mainly to the phyllosphere bacterial community (Bulgarelli et al., 2013).

Based on OTUs analyses and diversity indices, the robustness and species diversity remained significantly
higher in the rhizospheres compared to the endosphere and phyllosphere region of rice cultivars (Moronta-
Barrios et al., 2018). In the rhizosphere, more phyla were found increasing rather than decreasing over the life
cycle. But the inverse situation was observed for bacteria present in the endosphere where a percentage of
phyla in relative abundance were more prominent in the early stages of rice life and further decreased in
abundance over the life cycle of the rice plants (Edwards et al., 2018). In rhizosphere, the microbes colonizing
in later developmental stage are more conserved than early colonizing microbiome (Wu et al., 2018; Edwards
et al., 2015). A more pronounced conservation and stabilization of the adult microbiome has been observed in
the endosphere and phyllosphere compared to the rhizosphere (Edwards et al., 2018).

4. Plant growth promotion by phytohormone signaling
Beneficial microbiota can modulate plant hormone status by releasing exogenous hormones and  increasing
the physiological status of rice (Egamberdieva and Kucharova, 2009). Microbial derived phytohormones can
mediate several processes such as plants cell division and enlargement, modulate physiological status during
both normal and stressed condition (Glick, 2014).

Auxin: Auxin is a crucial phytohormone that plays a cardinal role in cell division, root growth and development,
root initiation, root growth inhibition, phototropism, and apical dominance. Approximately, eighty percent of
bacteria isolated in the rhizosphere region of some plants gained the capability to produce auxin as a secondary
metabolite (Kumar et al., 2015). Auxin biosynthesis is occurred by multiple pathways and among them, one
mechanism is the transformation of tryptophan to Indole Acetic Acid (IAA) which is easily absorbed by root
exudates. In the plant tissues, due to abundant IAA molecules, the auxin signaling pathway is triggered to
required production (Ilangumaran and Smith, 2017; Ambreetha et al., 2018; Kumar et al., 2015). Bacterial
derived IAA can loosen the root cell wall and rhizosphere bacteria get nutrients and metabolite from root
tissues (James et al., 2002). Bacterial IAA attract and allow more beneficial microbiota for entering into the plant
tissues via root tips for the establishment of endophytic bacteria (Etesami et al., 2015). A significant study was
designed to focus the role of bacteria derived IAA on the development of rice root biomass. The rice plants were
inoculated with IAA-overproducing mutants of Burkholderia cepacia (RRE25), showed the development of
proliferated root system than the plants inoculated with wild type strain or the un-inoculated plants. By
synthesizing auxin, PGPB can directly modify rice root morphology, and the nutrient acquisition might be
enhanced to a greater extent for the growth of rice (Singh et al., 2013).

Cytokinin: Cytokinin (CK) a group of adenine-derived phytohormones that regulate diverse mechanisms of
plant physiological aspects such as proliferation of cell division, significant root phenotyping, accumulation
of chlorophyll, leaf expansion, and shoot initiation etc (Li et al., 2019; Karnwal and Kaushik, 2011). Cytokinin
production have been reported in PGPB, belonging to diverse genera such as Pseudomonas, Azospirillum, Bacillus,
Proteus, Klebsiella and Pseudomonas isolated from a wide range of plant species (Persello-Cartieaux et al., 2001;
Karnwal and Kaushik, 2011). Previously a significant study was designed to evaluate the role of Methylobacterium
strains for rice. Results showed that the experimented bacteria were capable to increase germination rate and
the amount of cytokinin and auxin in the bacteria treated rice plants (seedlings) than untreated control one.
The experiment supported the idea (Holland, 1997) that cytokinin are produced by bacteria those rapidly
colonize at the juvenile plant after germination and are barely produced into the plant cells (Lee et al., 2006).
Raja et al. (2006) conducted a study to investigate the significant effect of individual and microbial consortium
Azospirillum lipoferum Az-204, Bacillus megaterium, Pseudomonas fluorescens on rice exudates. They found that
microbiome consortium enhances plant growth positively by synergistic mechanisms when compared to
single inoculants application. Through the biochemical analysis of rice root exudates, IAA and Cytokinin
amount was found to be significantly higher in the consortium treatments compared to the individual one.

Ethylene: Ethylene (ET), a gaseous plant hormone, is slowly diffusible in plant tissues while exerting its effects
on plant developmental, defense and symbiotic processes. Ethylene biosynthesis into the plant is initiated by
internal developmental signals and exogenous signals resulted from biotic and abiotic environmental factors
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(Nascimento et al., 2018; Zhou et al., 2019). Ethylene concentrations are regulated by the precursor’s 1-
aminocyclopropane-1-carboxylate (ACC) (Nascimento et al., 2018). In rice, ethylene positively regulates grain
size or weight, flowering, tillering and leaf angle but negatively affects rice grain filling and also causes early
plant senescence (Zhou et al., 2019). Under extreme environment, occurrence of excessive ACC synthesis due
to external stimuli is involved in initiating senescence, chlorosis and leaf abscission which ultimately leads
plant to death (Glick, 2014). The presence of ACC deaminase in bacterial cells can cleave ACC to produce
ammonia and -ketobutyrate reducing the amount of excessive ethylene that the plant synthesizes during
stress conditions (Yin et al., 2017; Steffens, 2014). One study was designed to evaluate the effectiveness of
bacteria containing ACC deaminase for enhancing salt tolerance and improving the growth of rice plants
under severe salt-stressed condition. Inoculation with the ACC deaminase containing strains Alcaligenes sp.,
Bacillus sp. and Ochrobactrum sp. reduced endogenous ethylene production by 90.2%, 81.6% and 81.5%,
respectively compared to the negative control (Bal et al., 2013). Another crucial study conducted by Chinnadurai
et al. (2009) revealed that phyllospheric bacteria Methylobacteria produced the enzyme ACC deaminase, reduce
the stress ethylene level (60–80%) in rice plant, enhanced the root and shoot length of rice seedlings under
gnotobiotic condition.

Abscisic acid: Abscisic acid (ABA) is a crucial phytohormone that is involved in synthesis of seed storage
proteins and lipids, gene expression regulation, stress-related protein biosynthesis, stomatal closure, and
promotion of seed desiccation tolerance (Ye et al., 2012). ABA mainly promote defense response by applying
antagonistic interaction with Salicylic acid (SA) and Jasmonic acid (JA) /ethylene or additive interaction with
JA, a very crucial aspects in plant immunity (Sahoo et al., 2014). ABA induces synthesis of compatible osmolytes,
Late Embryogenesis Abundant (LEA) like proteins and help reduce stress damage in plants ultimately increasing
plant stress tolerance. During stressed conditions, the bacterial ABA production might sustain the internal
ABA pool in plants, alleviating the negative effects of the imposed stress (Cassán et al.,  2014; Shahzad et al.,
2017). By utilizing gas chromatography-mass spectrometry, ABA production was detected for Bradyrhizobium
japonicum USDA110 (0.02 g/ml) and Azospirillum. brasilense Az39 (75.0 ng/ml) in two studies (Boiero et al.,
2007; Cassán et al., 2009). A crucial study was coined using high-performance liquid chromatography (HPLC)
technique to investigate phytohormone synthesis in several bacteria. Result showed the presence of  ABA
production in the culture medium of Proteus mirabilis, P. vulgaris, Klebsiella pneumoniae, Bacillus megaterium,
Bacillus cereus, and Escherichia coli (Karadeniz et al., 2006). ABA producing isolates of Azospirillum spp. were
obtained from the rhizospheric regions of rice fields near Khandagiri India which further were proved to
elevate endogenous nutrient content, improve growth and yield physiology of rice plants compared to other
treatments (Sahoo et al., 2014).

5. Phytohormonal role to strengthen rice immunity
The rice plant usually gets infected by a various number of pathogens which causes 10-15% global yield
losses. For plant induced immune responses, the first step is the mechanism to recognize the pathogen (Malukani
et al., 2019). Recognition is initiated by some signature molecules produced by bacterial and fungal pathogens
which triggers immune responses upon perception are termed as Pathogen or Microbial Associated Molecular
Patterns (PAMPs or MAMPs). Recognition of highly conserved MAMPs or PAMPs by plant tissues
transmembrane pattern recognition receptors (PRRs) leads to MAMP-triggered immunity (MTI) or PAMPs-
triggered immunity (PTI) that restricts pathogen attack to the host tissue (Gimenez-Ibanez et al., 2016). Moreover,
another type of mechanism behind the innate immunity in plants, which becomes effective upon recognition
of highly variable microbial molecules (also known as effectors), is known as effector-triggered immunity (ETI)
(Spoel and Dong, 2012).

Downstream to ETI or PTI mechanisms, the activation of intra phytohormones signaling networks stimulates
plant immune signaling network. JA and SA play a central role (Yang et al., 2015). SA and JA mediated defense
pathways usually antagonize each other for developing resistance against biotic stress. The SA signaling
positively enhance plant immunity against biotrophic pathogens that usually feed and reproduce on living
host cells. On the other hand, the JA/ET pathways are necessary for plant immune resistance against
necrotrophic pathogens and herbivorous insects which derive nutrients from living host cells (Figure 02)
(Gimenez-Ibanez et al., 2016). It has been suggested that SA is a master regulator of pathogen-induced Systemic
Acquired Resistance (SAR), whereas JA and ET are indispensable for PGPB mediated ISR. Usually, PGPB
induce ISR in rice or every model plant and ISR is effective against different types of pathogens but differs from
SAR. The differences occur due to the antagonistic role of SA and JA. It is manifested that beneficial microbe
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inhabits in the root exudates induce ISR in model plants. But some studies also reported exogenous synthesis
of SA by PGPB and this synthesis directly helps the model plant for defense response through inducing ISR
and SAR in plants (Gupta et al., 2020).

There are few reports under pathogenic condition where root colonization by PGPB was shown to synthesize
SA as for the secondary metabolites, which eventually induced plant systemic resistance and upregulated the
plant’s basal defense mechanisms (Kandaswamy et al., 2019; Rekha et al., 2020). The role of PGPB synthesized
SA for augmenting plant immunity was reported for Pseudomonas aeruginosa 7NSK2 and its SA producing
mutant (Patel et al., 2016). Systemic resistance induced by some Bacillus strains requires SA dependent pathways,
despite different strains of Bacillus sp. operate through an ET/JA-dependent mechanism similarly to Pseudomonas
fluorescens WCS417r (Patel et al., 2016). A study reported an increased concentration of SA in plants due to the
treatment of Bacillus pumilas (Zhang et al., 2002). Some study also reported Acinetobacter sp, Pseudomonas sp,
and Serratia sp, have higher potentiality for SA production (Gupta et al., 2020). Previous studies confirmed
that, root inhabiting endogenous PGPBs like Pseudomonas aeruginosa, Bacillus licheniformis, Bacillus cereus,
Bacillus mycoides, Bacillus pumilus, Bacillusphaericus and Bacillus subtilis, Pseudomonous fluorescens, Serratia
marcesceus, Burkholderiacepacia etc. have capacity for synthesizing SA in vitro and also provide role in plant
growth and development as well as survival capacity under adverse condition (Gupta et al., 2020). Although
PGPB normally induce ISR in the model plant, SAR was also reported to be induced by nonpathogenic
beneficial bacteria by synthesizing endogenous SA upregulating transcript related SA biosynthesis in various
plant species including rice plant (Kandaswamy et al., 2019; Rekha et al., 2020).

Figure 2: Phytohormonal regulation on immunity: Phytohormonal control on immunity against biotic stress
achieved by Salicylic Acid and Jasmonic Acid mediated defense pathways. SA is the key player in SAR whereas
ISR is mediated by JA. SAR involves PR-1 proteins which show antimicrobial action. On the other hand, JA and
Ethylene become induced in induced systemic resistance. PGPB turn on SA and JA pathways and trigger rice
plant to show immunity against attack by biotrophic and necrotrophic pathogens respectively. SA: Salicylic
acid, JA: Jasmonic acid, ET: Ethylene. ‘?’ indicates unidentified protein.

6. Beneficial characteristics possessed by PGPB
Biological Nitrogen Fixation (BNF): BNF is the process of reduction of dinitrogen from the air to ammonia
carried out by a large number of species of free-living and symbiotic microbes in both leguminous and non-
leguminous plant called Diazotrophs. Diazotrophic bacteria can also take up nitrogen from nitrate and nitrite
constituents of soil and fertilizers through reduction by nitrate and nitrite reductase and also from biologically
fixed and chemically converted nitrogen (Canfield et al., 2010). Several bacterial species including Azotobacter,
Clostridium, Azospirillum, Herbaspirillum, Burkholderia and Rhizobium can supply nitrogen to rice plants by
BNF and increase rice grain yield  (Biswas et al., 2000; Rima et al., 2018). Azotobacter sp. comprises of the
principal group of heterotrophic free-living nitrogen-fixing bacteria and plays crucial role for improving
productivity of the non-leguminous crops. Rice plants treated with Azotobacter vinelandii SRIAz3 are found to



Protup Kumer Sarker et al. / Afr.J.Bio.Sc. 4(2) (2022) 1-18 Page 7 of 18

be contained higher level of compatible solute, plant hormones and macronutrients, resulting in better growth
of root and shoots and thereby improved tolerance to salinity compared to other treatments (Sahoo et al., 2014).
Azotobacter chroococcum inoculation into rice results in positive response in several growth parameters in terms
of shoot length, root length, shoot dry and fresh weight, root fresh weight and panicle number both at vegetative
and reproductive stages. Azospirillum lipoferum shows maximum nitrogen fixation for super basmati variety
measured by N15 isotropic dilution method in greenhouse condition (Sahoo et al., 2014).

Phosphate and zinc solubilization: P-Solubilizing Bacteria (PSB) comprise 1-50% of the total representative
population of the soil (Gyaneshwar et al., 2002). Bacteria from the genus Bacillus, Rhodococcus, Arthrobacter,
Serratia, Chryseobacterium, Delftia, Gordonia and Phyllobacterium, generally show phosphate solubilization activity
(Chen et al., 2006). Bacillus spp PSB16 strain inoculation in aerobic rice plant results in P solubilization (24.08
mg kg-1) and increased plant P uptake (5.31 mg plant-1) at the highest P level of 60 kg ha-1 (Panhwar et al., 2011).
Following treatment with two Bacillus spp., soluble P, plant P uptake and organic acid concentration in roots
were significantly increased in aerobic rice variety after 60 days (Panhwar et al., 2011). Rice plants inoculated
with PSB Burkholderia seminalis were observed with greater plant height (18 cm) and dry biomass (0.76 g) and
also there was an increase in a bunch of parameters such as root length, surface area and volume in inoculated
plants compared to un-inoculated rice plants (Panhwar et al., 2014).

Rice is delicate to Zn deficiency and consequently causes malnutrition to most of the rice-eating Asian
populations (Krithika and Balachandar, 2016). PGPB inoculation abated Zn deficiency syndrome as indicated
by the increase in total biomass (23%), grain yield (65%), harvest index and Zn concentration in the soil (Tariq
et al., 2007). Zn solubilizing Bacillus spp. and Bacillus cereus strains significantly improved the translocation of
Zn to grains and improved yields of rice variety Basmati-385 and Super Basmati by 22-49% and 18-47%
respectively (Shakeel et al., 2015). Multiple Pseudomonas strains were reported to account for almost 1.5- to 2-
fold increase in Zn content in roots, shoots as well as grains of rice plant (Oryza sativa L.) in comparison to the
control and showed improvement in rice growth and yield (Sharma et al., 2015). Burkholderia and Acinetobacter
strains significantly increased the total Zn uptake/pot (52.5%) along with grain methionine concentration
(38.8%) in rice (Vaid et al., 2014).

Siderophore production: Iron (Fe) is an essential micronutrient for all living organisms in the soil, but its
availability is often limited (Tariq et al., 2017). Siderophores can bind to Fe3+, transport it back to microbial cells
and make it available for microbial growth (Meyer, 2000). Siderophores are sometimes secreted by PGPB,
ultimately taken up by plants, therefore, transporting a molecule of iron to the plant’s cells. Plant roots can take
up siderophore and utilize them as the iron sources (Sharma and Johri, 2003).

Many researchers have reported the siderophore production in a wide range of bacterial species like
Bacillus, Pseudomonas, Azotobacter, Arthrobacter, Burkholderia, Enterobacter, Rhodospirrilum, Serratia, Azospirillum
and Rhizobium. In the rhizosphere region, PGPB derived siderophore have dual functionality: (a) Siderophores
can improve plant growth by increasing plant nutrient availability through iron uptake. (b) Beneficial bacteria-
derived siderophore prevents the growth of soil-borne pathogens causing iron limitation in the rhizosphere
(Saha et al., 2016; Tariq et al., 2017; Delaporte-Quintana et al., 2020). A study was performed to observe the
association of Siderophore Producing Bacteria (SPB) in Oryza sativa cultivated in Uruguayan soils. The author
reported that rice roots were enriched in SPB than the surrounding soil (Loaces et al., 2011). For better
understanding the beneficial effect of microbe derived siderophore for rice, a pot culture experiment was
carried out where the siderophore-producing Streptomyces sp. GMKU 3100 which was isolated from the roots
of Thai Jasmine rice plant, was utilized. The group developed a mutant of Streptomyces sp. GMKU 3100 deficient
in siderophore production. In the pot culture experiment, the rice plants were treated with Streptomyces sp.
GMKU 3100 wild type and mutant keeping bacteria untreated plant as base control and the Results revealed
that rice plants inoculated with the wild type had the best enhancement of plant growth, root and shoot
biomass compared to untreated controls and mutant treatments (Rungin et al., 2012).

7. PGPB on biotic stress tolerance of rice
To alleviate the negative effect of biotic stresses on the rice plant, PGPB offers potentially new biological control
agents with a novel mechanism of disease suppression in the range of environment. The beneficial microbes
either alone or in combinations can lower the doses of usage of harmful chemicals and environmental hazards
needed to obtain a profitable crop yield (Lucas et al., 2014; Van Loon et al., 1998). The induction of ISR by
beneficial microbiome mainly involves Jasmonate (JA) or/and Ethylene dependent signals, ISR is closely
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related with the enhancement in sensitivity to these hormones may lead to the activation of the different set of
defense genes (Figure 3) (Pieterse et al., 2001). According to the Lucas et al (2014) Chryseobacterium sp. and
Pseudomonas sp. can augment ISR against Xanthomonas campestris by different mechanisms. Chryseobacterium
sp. can significantly enhance Ascorbate Peroxidase (APX), Glutathione Reductase (GR) and Acyl-Homoserine
Lactone (AHL) enzymes related to the detoxification of reactive oxygen species (ROS). While Pseudomonas sp.
administration enhance pathogenesis-related proteins (PRs) such as b-1,3-Glucanase and chitinase are
involved in defensive mechanism of rice plants against pathogen attack (Xanthomonas campestris). The
siderophore produced by Pseudomonas fluorescens WCS374r to trigger ISR in rice against the leaf blast pathogen
Magnaporthe oryzae was found to be an important determinant of ISR (De Vleesschauwer et al., 2008). Bacillus
amyloliquefaciens (SN13) mediated biotic stress tolerance by enhancing the immune response against Rhizoctonia
solani in rice through production of proline, mannitol, and arabitol, quinazoline and hormonal cross talk
(Srivastava et al., 2016).

8. Effect of abiotic stress on rice growth and PGPB as an option for alleviation
Changing climate is a concerning issue in today’s world and agriculture is considered to be the most vulnerable
sector to it. Increased incidences of abiotic and biotic stresses are being witnessed all over the world and has
become the major cause for the stagnation of productivity in principal crops. Extreme events like increased
salinity, droughts, prolonged rains with flooding, heat waves, frost damages, elevated CO2 and cyclones
which are responsible for serious economic losses are likely to further increase as a result of climate change
(Grover et al., 2011). Evolving such methods is a major challenge for stress management. Induced Systemic
Tolerance (IST) is a term used for indicating PGPB-induced physical and chemical changes that makes the
host plants tolerant to abiotic stresses. Researches claim that symbiotically conferred abiotic stress tolerance
involves at least two mechanisms: (1) Activation of host’s stress response after exposure to stress which allow
plant to mitigate the negative impacts of the stress (Redman et al., 1999) and (2) Biosynthesis of some anti-stress
biochemical by PGPBs for alleviating stress on host plant (Schulz et al., 2002). PGPB act as stress controller for
associated plants (Lata et al., 2018). Beneficial bacteria can play significant roles in specific stressed environment
by various stress-specific mechanisms.

Role on drought tolerance: Among all the abiotic stresses, drought stress is the most destructive one affecting
the world’s food security. The increased intensity of drought stress over the past decades has caused havoc
plant growth problems and it is suspected that the problem will take over more than 50% of the arable lands by
2050 (Kasim et al., 2013). Drought is a multidimensional stress that affects different physiological, morphological,
biochemical and molecular traits in plants ultimately leading to yield loss and plant death. Drought also
increases the production of free radicals and ROS affecting antioxidant defenses resulting in oxidative stress
(Vurukonda et al., 2016). To alleviate the negative impacts of drought stress, PGPB impose different mechanisms,
production of different Extracellular Polymeric Substances (EPS), ACC deaminase, phytohormones,
accumulation of osmolytes, antioxidants and volatile compounds, upregulation or downregulation of some
stress-responsive genes, and modification in morphology of the root architecture, etc. (Figure 3)
(Mohammadipanah and Zamanzadeh, 2019). To evaluate the beneficiary effect of bacteria for mitigating
drought, Gluconacetobacter diazotrophicus Pal5 was inoculated on the red rice and the results showed that
bacteria treated rice plants have increase in plant biomass, higher levels of gas exchange, synthesis of osmo-
protective solutes, and defense genes (catalase (CAT), superoxide dismutase (SOD) and betaine aldehyde-
dehydrogenase (BADH)). So Gluconacetobacter diazotrophicus Pal5 inoculation was beneficial for rice, minimizing
the various deleterious effects of drought stress and increasing biomass and yield potential (Filgueiras et al.,
2020). Narayanasamy et al. (2020) found that Bacillus altitudinis FD48 and Bacillus methylotrophicus RABA6 co-
inoculated two rice cultivars have enhanced photosynthetic pigment, proline content and increased activity of
ROS- quenching enzymes, thereby increasing drought resilience and growth augmentation in rice plant.
Moreover, Increased relative water content, chlorophyll and membrane stability index, increased proline and
phenolics content, catalase activity, reduced malondialdehyde (MDA) content, ethylene emission are observed
in Bacillus altitudinis FD48 treated rice plants to evade drought stress (Aswathy et al., 2017). ACC deaminase
producing bacterial consortium has been found to alleviate drought stress on model crops by down regulating
ACC-oxidase gene expression (Saikia et al., 2018).

Salinity and alkalinity tolerance: Salinity is the second most disastrous stress that negatively impacts plant
growth, development and yield. According to an estimate of the United Nations environment program,
approximately 20% of agricultural and 50% of cropland around the world is affected by salinity stress (Flowers,
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2004). It is suspected that 50% of the total agricultural area may be affected with salinity by 2050 (Yoo et al.,
2019). Osmotic and ionic stress are the two major stresses that plants have to face as an effect of salinity.
Osmotic stress causes dehydration and accumulation of salt in the soil surrounding plant root. Ionic stress
causes an excessive influx of sodium ion and efflux of potassium ion leading to Na+ toxicity inside plant cell
(Orozco-Mosqueda et al., 2018). The salinity stress overall causes stomatal closure, decreased plant
photosynthesis rate, constant production of ROS imposes oxidative stress on plants (Figure 3) (Ilangumaran
and Smith, 2017). PGPB is known for their excellent stress mitigating properties, Bacillus subtilis GB03 has been
reported to confer salt tolerance by tissue-specific regulation of HKT1 (High affinity K+ transporter 1) gene
under salt stress resulted in lower Na+ accumulation throughout the plant (Zhang et al., 2008). Bacillus
amyloliquefaciens RWL-1 modifies the physiology of rice plants by upregulating of essential amino acids in
plant as a response to stress, reduced endogenous ABA and increased SA in rice plant during saline condition
(Shahzad et al., 2017). Sun et al. (2020) explored that rice seedling had been inoculated with Pantoea alhagi NX-
11 exhibited higher amount of fresh weight, increasing root and shoot length, increasing chlorophyll contents
and proline level, decreasing MDA level and produced large amounts of EPSs. So, it has been speculated that
the ability of Pantoea alhagi NX-11 to enhance the salt tolerance of rice seedlings is related to the above
explanations that PGPB evade the saline stress of rice plants by several mechanisms.

Figure 3: Abiotic stress tolerance: Plant growth promoting bacteria exploit multiple strategies to make rice
plant tolerant to abiotic stresses such as drought, cold, salinity and heat stress. SOD: Superoxide dismutase,
APX: Ascorbate peroxidase, CAT: Catalase, EPS: Extracellular polymeric substances, ACC: 1-Aminocyclopropane-
1-carboxylate, HKT1: High affinity K+ transporter 1

Heat tolerance: Increased heat stress as a result of global warming causes crop loss frequently. Plant
photosynthesis is highly sensitive to heat stress and fluctuations in temperature severely reduce the rate of
carbon assimilation (Kumar et al., 2019). Researchers are concerned with this issue and the researchers at the
last two decades has revealed that plant thermos tolerance is regulated and governed by the casein lytic
proteinase/heat shock protein 100 (ClpB/Hsp100). As evidence, arabidopsis mutants becomes extremely
sensitive to heat when there is defect in ClpB/Hsp100 protein expression. Similar incidence has been observed
in rice and maize mutant plants defective in ClpB/Hsp100 synthesis (Mishra and Grover, 2016). Beneficial
bacteria respond with changing temperature and may impact on plant physiological status under heat stress.
Wheat seed treatment with bacterial strains Bacillus amyloliquefaciens UCMB5113 or Azospirillum brasilense
NO40 caused decreased expression of several stress related genes and lower response of ascorbate-glutathione
redox cycle. Reduced generation of ROS, changes in metabolome profile and pre-activation of some heat shock
transcription factors are some important mechanisms through which the bacterial strains helped the plant
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(El-daim et al., 2014). So, searching for heat-tolerant bacteria which are capable of regulating and inducing the
level of osmolytes in plants may take the study a step ahead to unrevealed how PGPB mitigate heat stress in
rice plants (Figure 3).

Cold stress tolerance: Bacteria-mediated cold stress tolerance of rice cultivars is also not a well-studied area
and need to be explored more. Cold stress imposes destructive impacts on plants life causing disruption of
micro-organelle, dehydration of cells and tissues and production of ROS of concomitant oxidizing potential
(Kazemi-Shahandashti and Maali-Amiri, 2018). Cold stress exerts different physiological, biochemical and
molecular changes in plants (Figure 03) (Li et al., 2018). According to an experiment, the presence of consortium
of two rhizobacteria Bacillus amyloliquefaciens Bk7 and Brevibacillus laterosporus B4 decreased leaf MDA content
and electrolyte leakage, and increased leaf proline, SOD, CAT, and chlorophyll content. Moreover, up-regulated
expression of OsMYB3R-2, OsDIL, OsDREB1A and OsCDPK13 genes can play important roles to confer induced
systematic tolerance, augment the physiology of rice plants subject to chilling and drought stress (Kakar et al.,
2016).

9. Role of PGPB to enhance yield
Rice yield is determined by management practices, which must denote the productive capacity of a crop
ecosystem. Rice is phonologically divided into vegetative stage (from emergence to panicle primordia initiation),
reproductive stage (from panicle primordia initiation to flowering), and spikelet filling stage (from flowering
to physiological maturity). Yield potential of rice is formed or defined during these growth stages. The
reproductive growth stage is the most sensitive to biotic and abiotic stresses, followed by spikelet filling stage
and vegetative growth stage (Fageria, 2007). Rice root-associated bacteria assembly is important for yield
enhancement under both normal and drastic climate condition (Table 1). Bacterial community is a crucial
descriptor of different stages of rice plant growth and survival capacity. According to Edwards et al. (2018),
plant age and developmental stage are very crucial drivers of the root-associated bacteria (Edwards et al.,
2018). The combination of physical (root structure morphology) and chemical (root exudation) modification
contributes to the succession of the bacterial diversity. The differences between the bacterial community and
functional gene expressions at different time period were found to be important regulators in enhancing rice
yield (Wang et al., 2019).

Table 1: Some reported experiments where PGPBs (as single inoculants or combinations) have been showed
to augment rice physiological status (yield) under several climate conditions

Plant growth promoting
bacteria

Herbaspirillum sp.,
Burkholderia sp.,

Pseudacidovorax sp., Rhizobium
sp., Azospirillum sp.
Pseudomonas sp., Candida
sp.,Bacillus
amyloliquefaciens,Bacillus subtilis

Seven rice endophyte strains of
R. leguminosarum bv. trifolii

Pseudomonas fluorescens

Yield enhancement

Enhancement of plant height, NPK uptake, dry shoot and grain
production, though chemical fertilizer was diminished in half.

Increasing grain and straw yields, total N uptake and grain quality
in terms of percentage N. Nitrogen fertilization increased grain
and straw yields as well as total N and P uptakes significantly in
studied cropping seasons.

Inoculation with single strains or multi-strain consortia
significantly promoted grain yield. Grain yield was increased up
to 47% in field experiment.

Inoculation with mixture of PGPR (plant growth promoting
rhizobacteria) strains to the rice plant significantly promoted grain
yield. The average yield enhancement was 17.7%, for single strains
and 25.9% in case of mixture.

References

(Souza et al., 2013)

(Cong et al., 2009)

(Yanni and Dazzo,
2010)

(Nandakumar et al.,
2001)
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Table 1 (cont.)

Plant growth promoting
bacteria

Yield enhancement References

Bacillus sp.

Lysinibacillus
xylantilyticus,Alcaligenes
faecalis,Bradyrhizobium
japonicum,Rhizobium etli,
Bacillus subtilis,

Burkholderia sp. Pseudomonas
aeruginosa

Pseudomonas species,
Azotobacter chroococcum and
Azospirillum brasilense.

The bacteria reduced disease severity and increased yield as well
as yield related parameters such as plant height, tillering, panicle
length and yield.

The significant effects of beneficial bacterial inoculations are
appeared due to plant growth promotion activities. Isolated
indigenous PGPR and rhizobial strains have the potentiality to
increase growth and yield of rice by minimizing Nitrogen fertilizer
use.

Application of two most efficient phosphate solubilizing bacteria
by root dipping (colonization) during seedling stage and
administrating at the flowering stage significantly increased the
growth and grain yield of rice variety BRRI dhan-29 with reduction
of major fertilizers utilization.

Combined application of RHB (Rice Husk Biochar) and PGPB,
higher rice yield and uptake of nutrients in rice were significantly
obtained.

(Rais et al., 2016)

(Ali-Tan et al.,
2017)

(Khan et al.,
2017)

(Singh et al.,
2017)

Among the production practices, Water and Nitrogen (N) have especial importance in increasing rice
yield. The significant effect of Nitrogen, Phosphorus, Potassium (NPK) and bacterial bio-fertilizer was evaluated
in aerobic rice to find the beneficiary role bacterial bio-fertilizer. The treatments of bacterial bio-fertilizer along
with NPK directly affect the rice morphological growth and yield as the combination was able to fix atmospheric
nitrogen in the rice plants (Nasarudin et al., 2018).

To evaluate the performance of PGPBs as bio-fertilizers for increasing rice grain yield, rice plants were
treated with bacteria non inoculants, single bacteria inoculant, bio-fertilizer inoculants (prepared with four
diazotrophs) keeping uninoculated plants as controls. In both controlled pot experiment and different fields
conditions, bio-fertilizers inoculants treated plants increased yield between 9.5 to 23.6%, while single inoculants
alone increased yield by 5.6 to 12.16% over the un-inoculated control treatment (Govindarajan et al., 2008).

10. Conclusion
Changing climate is a threat to rice production and PGPBs could be an excellent alternative to the other
harmful methods used to increase rice productivity. Exploring the properties of PGPBs will help in finding the
best possible formulations for enhancing rice yield under adverse conditions. PGPBs are gaining popularity
as biofertilizers nowadays and information of researches till done on PGPBs could help this process to be
progressed faster. A lot have been explored and more to know yet. This review is aimed to highlight some such
necessary information which would help the researchers in their scientific field of establishing sustainable
agriculture. But the limitation of the review is that it only deals with exploring the beneficial effect of PGPBs to
the rice plant. The question of how the PGPB augment and modify physiological status of rice plant remain
unsolved. In the recent years, researchers are keen to utilize omics-based studies (Genomics, Transcriptomics,
Proteomics) to identify the molecular mechanisms behind the beneficial interactions among rice and PGPB.
Although this review can’t provide the crucial information in view of molecular aspects, it will depict the
positive interrelation among rice-PGPB interaction.
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