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Abstract
Plant cell and tissue cultures are promising biotechnological tools for the
production of a myriad of bioactive  secondary metabolites on demand.
Discoveries of cell cultures capable of producing specific medicinal compounds
at a rate similar or superior to that of intact plants have been accelerated in the
last few years. Soyasaponins have recently gained more attention due to their
biological activities and health-promoting functions. There are many reports
relating the bioactive benefits of soyasaponins to their chemical structure mainly
Soyasaponin I which possess unique pharmacological actions. Our previous study
indicated that Tipuana speciosa (Benth.) leaves extract showed promising anti-
malarial and nephroprotective activities. This study aimed to isolate Soyasaponin
I, a major compound in the leaves extract and the use of cell suspension culture as
a biotechnological route for high-yield production of this bioactive molecule.
The compound was identified by LC-MS/MS analysis and other NMR techniques.
To the best of our knowledge, there is no previous studies have been undertaken
for the isolation and the production of Soyasaponin I from T. speciosa leaves
using plant tissue culture technology. Our data showed that the callus and cell
aggregate of T. speciosa represent an over producer cell lines (220 folds) compared
to the whole plant.
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1. Introduction
Plant cell culture hold a great promise for controlled production of several biologically active secondary
metabolites on demand. Discoveries of cell cultures capable of producing specific medicinal compounds at a
rate similar or superior to that of intact plants have been accelerated in the last few years (Hussain, 2012). For
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obtaining high yields bioactive molecules suitable for commercial 21 exploitation, efforts have been focused on
isolating the biosynthetic activities of cultured cells by optimizing the cultural conditions and selecting high-
producing strains (DiCosmo and Misawa, 1995). The major advantages of a cell culture system over the
conventional cultivation of whole plants are as follows: (A) Secondary metabolites can be produced under
controlled conditions regardless the climatic changes. (B) Cultured cells are deprived of microbes and insects.
(C) Reducing labor costs and enhancing productivity. (D) Organic substances are easily extractable from
cultures.

Saponins are triterpenoid or steroidal glycosides that occur in several plant species (Waller et al., 1993; and
Popovich, 2009). The sapogenin aglycons are often substituted with a varying number of sugars via an ether or
ester bond at one or more glycosylation sites. Saponins are usually located in the seed, leaves, stems and roots
of plants (Waller et al., 1993; and Popovich, 2009). These compounds are generally associated 31 with plant
defense but have also been associated with other biological properties such as insecticidal activity and antifungal
activity (Waller 1993, Popovich 2009). They have recently gained more 33 attention because of their bioactivities.

There are many reports relating the bioactive benefits of soyasaponins to their structures such as their
potential health-promoting functions, enzyme-altering activity, antimutagenic activity, antiviral activity,
hepatoprotective effects, interaction with bile acids, cancer chemopreventation and cholesterol lowering
properties (Berhow et al. 2002, Popovich 2009). The antiviral functions of soysaponins were demonstrated in
the herpes simplex virus type 1. Moreover, soyasaponins have been evaluated for their antiviral activity
against in vitro HIV, demonstrating that Soyasaponin I inhibit HIV-induced cytopathic effects (Berhow et al.
2002). Soyasaponins I (Figure 1) have an inhibitory effect on human cytomegalovirus (HCMV), influenza A
virus, and human immunodeficiency virus type. Soyasaponin I is effective in preventing colon cancer by
affecting cell morphology, cell growth, and cell proliferation enzymes. Also, it have the potential to reduce the
growth of cultured human liver cancer. A majority of soyasaponins were found to induce apoptosis cell death
(Berhow et al., 2002).

Figure 1: Chemical structure of Soyasaponin I
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Some studies have shown that Soyasaponin I possesses free radical scavenging activity comparable to that
of tocopherol inhibiting lipid peroxidation. It has antioxidant effects on rat liver microsome through the
inhibition of lipid peroxidation (Berhow et al., 2002). Although scientific reports on soyasaponins have been
around for at least 80 years, the extraction, purification and quantification still presents many challenges to
pharmacognosists. Soyasaponin glycosides are structurally similar; so the purification process is complex,
with long sample preparation and extraction times and yielding relatively low amounts of soyasaponins
(Berhow et al., 2002; and Oleszek and Bialy 2006). We have previously indicated that Tipuana speciosa (Benth.)
leaves extract showed promising anti-malarial and nephroprotective activities due to their Soyasaponins
content mainly Soyasaponin I (Kassem et al., 2013).

Here, the work—in hand—is unravelling the overproduction of Soyasaponin I from Tipuana speciosa (Benth.)
leaves (Figure 2), a widely distributed ornamental tree in Egypt, by tissue culture technology. To the best of our
knowledge, no study has been undertaken for the production of Soyasaponin I from T. speciosa by tissue
culture technology and we report for the first time its isolation from the leaves.

Figure 2. Leaves and legumes of T. speciosa Benth

2. Materials and method

2.1. General (solvents and reagents)
Solvents used in for extraction are petroleum ether (40-60 °C), ether, chloroform, ethyl 84 acetate, methanol, n-
butanol and ethanol. All solvents were purified according to the methods 85 mentioned by Vogel (1961). All
NMR spectra were carried in CD3OD and DMSO (99.95%, 86 Sigma Aldrich). Solvents used for HPLC analysis
were of HPLC grade (Sigma Aldrich Co).
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2.2. Plant material
T. speciosa (Benth.) leaves were collected in December 2011 from Azaritta in Alexandria, Egypt. The plant was
identified by Prof. Dr. Hosny Abo gazya at Ornamental trees department, Faculty of Agriculture, University of
Alexandria, Egypt. A voucher sample was deposited in the Department of Pharmacognosy, Faculty of Pharmacy,
University of Alexandria, Egypt.

2.3. Initiation of static and suspension cultures T. speciosa

Using 1.25 % (v/v) hypochlorite solution (Chlorex ®), the leaves were soaked for 15 min to be surface sterilized
and then washed three times with sterile water and left to dry on filter paper. MS (Murashige and Skoog-based
media, 1962) (Caision Laboratory, USA) was used as the basal tissue culture nutrient. The media pH was
adjusted to 6.0 prior to autoclaving at 121 °C and 15 psi for 20 min. Agar (Sigma Chemical Co.) (1% w/v) based
MS medium with sucrose (Sigma Chemical Co.) (30 98 g/L) was supplemented with 2, 4-dichlorophenoxyacetic
acid (Eastman Kodak Chemical Co., USA) 1.0 ppm (2, 4-D 1). Benzyladenine (Sigma Chemical Co.), 1.0 ppm
(BA 1) was used to establish suspension cultures. Liquid cultures were established from static cultures by
growing them in the same medium without agar. Static cultures were grown on 5-10 mL of medium in culture
vials. Liquid cultures were grown in 50 mL of medium in 100 mL Erlenmeyer flasks. The leaves were cut into
1 cm long pieces. These explants were transferred to MS static medium supplemented with 2, 4-D grown under
16 h photoperiod at 23 °C. The explants stated to form callus at the cut surfaces exposed to the media within
approximately one week. The calli were taken over at the end of four weeks. Static culture calli were transferred
into the appropriate MS liquid media and grown under photoperiod at 23 °C at 100 rpm using gyrotory shaker
(BIOSAN multi-shaker PSU 20, Latvia, Europe) and subcultured every four weeks.

2.4. Fractionation of the total collected suspension culture

Suspension cultures were pooled together in one flask, then the cells were separated out from the media and
both were kept aside for fractionation protocol using petroleum ether, n-butanol, chloroform and ethylacetate
(all solvents were purchased from Sigma Chemical Co.) as the extracting solvents, respectively. All media
extracted fractions did not contain any secondary metabolites as evidenced by the absence of any residue or
precipitate after concentration using rotary evaporator. This as well as TLC screening procedures might give
an indication that the secondary metabolites formed inside the cells, but not leaked into the culture media.
Twenty grams of the dry weight of cultured cells (Callus) were homogenized inside a mortar using neutral sea
sand and ethanol (Sigma chemical Co.) as the extracting solvent. The ethanolic extracts were  filtered through
a cotton piece, then they were freed from the solvent and dissolved in 30 mL of 70% ethanol prior to fractionation
protocol using petroleum ether, chloroform, ethyl acetate and n-butanol, respectively. The four fractions were
concentrated using rotary evaporator and left aside till complete dryness. A white crystalline precipitate was
obtained from the n-butanolic fraction.

2.5. Isolation of soyasaponin I from the leaves of T. speciosa

Fresh leaves (5.5 kg) of T. speciosa Benth. were chopped and exhaustively extracted with 70% ethanol (14 L) by
percolation at room temperature. The ethanolic extract was filtered and the solvent was distilled off under
reduced pressure at 50 °C. A dark greenish-brown residue (75 g) was dissolved in (1 L) mixture of ethanol and
water (7:3) and extracted successively by shaking with petroleum ether (10 × 500 mL), chloroform (8 × 500 mL),
ethyl acetate (6 × 500 mL) and n-butanol (6 × 500 mL). The solvent, in each case, was evaporated and the
corresponding residues were weighed to give 25 g, 2.5 g, 4 g, 33.8 g of Petroleum ether, chloroformic, ethyl
acetate and n-butanolic fractions, respectively.

A part of the residue of n-butanol fraction (10 g) was chromatographed on a column (5 × 70 134 cm) packed
with silica (300 g) in methylene chloride. The column was eluted with methylene chloride followed by methylene
chloride with increasing amount of methanol. Fractions (100 mL each), were collected. About 62 eluted fractions
were collected and similar ones are pooled together according to their TLC behaviors. Two major violet spots
and minor faint yellow spots were observed in fractions 46-62. The residue of fractions 46-62 (1.9 g) was
washed with a mixture of ethyl acetate and methanol (1:1) then recrystallized from methanol to give white
crystals (15 mg) and was designated as compound I.
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2.6. Analysis using LC-MS/MS

The resulting precipitate (5 mg) from the cell extract was dissolved in 1 mL of HPLC grade ethanol (Sigma
Chemical Co.) and filtered through 0.2 m micropore syringe filter prior to analysis using LC/MS. The same
was performed with 5 mg of the n-butanol fraction of the total crude plant extract.

2.6.1. HPLC conditions

Analyses were performed using a Dionex UltiMate® 3000 HPLC ( Germany) composed of a quaternary pump
with an on line degasser, a thermostatted column compartment, a photodiode array detector (DAD), an auto
sampler, and 1100 Chromeleon® software. The HPLC separation was performed on Eclipse XDB C18 column
(50 mm × 2.1 mm, 1.8 m, Agilent Company, USA). Mobile phase consisted of two solvents, (A) methanol and
(B) 0.2% formic acid. Separation of compounds was carried out with gradient elution profile: 0 min, A: B 10:90;
36 min, A: B 100:0; 40 min, A: B 100:0. Chromatography was performed at 30 °C with a flow-rate of 0.2 ml/min.
UV traces were measured at 290, 254 and 350 nm and UV spectra (DAD) were recorded between 190 and 900
nm.

2.6.2. Mass spectrometric conditions

The HPLC-MS system consisted of electrospray ionization (ESI) interfaced Bruker Daltonik Esquire-LC Amazon
SL ion trap mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany) and an Dionex UltiMate® 3000
HPLC system equipped with an autosampler and Diode array detector UV spectra (DAD) were recorded
between 190 and 900 nm. The ionization parameters were as follows: negative ion mode; capillary voltage
4000 V, end plate voltage –500 V; nebulizing gas of  nitrogen at 50.0 p.s.i.; drying gas of 10 l/min nitrogen at
350 °C. Mass analyzer scanned from 70 to 1000 u. The MS–MS spectra were recorded in auto-MS–MS mode.
The fragmentation amplitude was set to 1.0 V. MS2 data were acquired in negative mode.

2.7. Identification of compound I by NMR and ESI-MS/MS

The identity of the isolated compound I was further confirmed by using 1H-NMR, HMBC, HMQC, 13 C-NMR,
LC-MS/MS. The experiments were performed on a Bruker DRX-600 spectrometer (Bruker BioSpinGmBH,
Rheinstetten, Germany) equipped with a Bruker 5 mm TCI CryoProbe at 300 K. All 2D-NMR spectra were
acquired in CD3OD solvent (99.95%, Sigma Aldrich) and standard pulse sequences and phase cycling were
used for DQF-COSY, HSQC, HMBC and ROESY spectra.

3. Results and discussion
Soyasaponins are amphiphilic molecules, with polar water soluble sugar moieties attached to a nonpolar,
water insoluble pentacyclic ring structure. Soyasaponins are categorized according to the individual aglycones
(soyasapogenols), and there are two main aglycones, referred to as group A and group B. Group A soyasaponins
are bidesmosidic saponins with two glycosylation sites at carbons 3 and 22 on the oleanane ring structure.
Group B soyasaponins have one glycosylation site on their aglycones (carbon 3) and are also classified into
two groups, based on the conjugation at carbon 22 with a 2, 3-178 dihydro-2, 5-dihydroxy-6-methyl-4-pyrone
(DDMP) moiety or non-DDMP conjugated soyasaponins. Non-DDMP conjugated soyasaponins are known as
soyasaponins I, II, III, IV and V (Popovich, 2009).

Plant tissue culture is a promising tool for the production of secondary metabolites than the use of the
whole plant. Here, in the present work, T. speciosa was used for the production of Soyasaponin I by plant tissue
culture technology. The fresh leaves of the plant were used as explant for this purpose. The callus was induced
on solid culture media using 2, 4-D 1 phytohormone. Callus started to be formed as a light yellowish-green
undifferentiated mass after two weeks at the cut surfaces exposed to the solid media (Figure 2).

The HPLC-MS/MS analysis (Figure 3) of the n-butnolic fractions of both T. speciosa cultured cells (calli) and
the dried leaves extract showed major peaks (peak 1 is the one of interest). The retention time, area, area purity
and m/z values of peak 1 are summarized in Table 1.
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Figure 2. (A) and (B) Callus of T. speciosa (Benth.) leaves explant induced on solid media supplemented with

2, 4-D (1 ppm). The callus appeared after four weeks approximately. (C) Suspension culture in liquid MS

medium supplemented with BA (1 ppm).

Table 1: Retention time, area purity % and m/z values of the n-butnolic fractions major peaks of both T.

speciosa cultured cells (calli) and the dried leaves extract

Peak# tR [min] Area Area purity% Max. m/z

1 3 3 1837040036 100 941.7

1 33.1 815025832 95.4 941.6

Figure 3. HPLC analysis of (A) the n-butanolic fraction of T. speciosa Benth cultured cells (B) the

n-butanolic fraction of T. speciosa Benth dried leaves extract. Peak 1 is the peak of interest
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The negative ion mode ESI-MS spectrum of this peak for the n-butanol fraction of T. speciosa plant extract
(Figure 4) showed a major ion peak at m/z 941.7 assigned for [M-H]- of compound I and a fragment at m/z 795.6
assigned for [M-Rhamnose-H]- which was formed through the loss of rhamnose sugar unit. Another fragment
ion at m/z 977.2 was assigned for [M+Na]+ in the positive ion mode (Figure 5).

Qualitative chemical reactions and acid hydrolysis of the isolated compound I from the n- butanolic fraction
of the leaves extract indicated that is a saponin glycosides (riglycosylated). Also, different spectral data (ESI-
MS/MS, 1H-NMR, 13C-NMR, HMQC and HMBC) suggested that the compound belongs to oleanene type
saponin glycoside. The oleanene structure was confirmed by the presence of diagnostic signals in 1H- and 13C-
NMR spectra.

Figure 3:  (Cont.)

Figure 4: Negative ion mode ESI-MS spectrum of peak 1 in the n-butanol fraction

of T. speciosa callus extract
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Figure 5: Positive ion mode ESI-MS spectrum of peak 1 in the n-butanol fraction of T. speciosa callus extract

1H NMR spectrum of the compound (Table 2) revealed the presence of three sugar moieties, by the appearance
of three anomeric proton doublets at 4.48(J = 7.5 Hz), 4.90 (J = 7.9 Hz) and 5.22 (J = 1.2 Hz) (Supplementary Data).

                              Aglycone                                          Sugar portion

# H (J in Hz) C ppm  H (J in Hz) C ppm

1 39.6 1.67, 1.07, m  -D-GlcA (at C-3)
2 26.7 2.20, 1.85, m 1’ 105.4 4.48, d (7.5)
3 92.2 3.42, dd (11.5, 4.2) 2’ 77.0 3.79, dd (7.5, 9.0)
4 44.8 - 3’ 78.3 3.65, dd (9.0, 9.0)
5 57.2 0.97, m 4’ 73.9 3.47, dd (9.0, 9.0)
6 19.3 1.66, 1.42, m 5’ 76.9 3.63, d (9.0)
7 34.2 1.60,1.44, m 6’ 177.1 -
8 40.6 -
9 48.9 1.60, m -D-Gal (at C-2glcA)
1 0 37.0 - 1 ” 101.9 4.90, d (7.9)
1 1 24.6 1.92, (2H) m 2 ” 78.0 3.67, dd (8.5, 7.9)
1 2 123.6 5.27, t (3.5) 3 ” 76.3 3.52, dd (8.5, 2.9)
1 3 145.0 - 4 ” 70.8 3.79, dd (2.9, 1.2)
1 4 43.3 - 5 ” 76.2 3.57, m
1 5 26.5 1.80, 1.09, m 6 ” 62.0 3.76, dd (12.0, 2.5)3.73, dd (12.0, 4.5)
1 6 29.6 1.78, 1.38, m                                       -L-Rha (at C-2gal)
1 7 38.3 - 1”’ 101.6 5.22, d (1.2)
1 8 46.5 2.08, m 2”’ 72.1 3.95, dd (1.2, 3.2)
1 9 47.7 1.78, 0.99, m 3”’ 71.3 3.75, dd (3.2, 9.7)
2 0 31.2 - 4”’ 74.1 3.43, t (9.7)
2 1 42.0 1.48, 1.36, m 5”’ 69.4 4.12, m
2 2 76.6 3.42, brs 6”’ 18.0 1.30, d (6.5)
2 3 23.3 1.29, s
2 4 64.2 4.16, d (11.4)3.24, d (11.4)
2 5 16.3 0.93, s
2 6 17.4 1.01, s
2 7 25.3 1.16, s
2 8 20.2 0.87, s
2 9 32.4 0.95, s
3 0 28.9 1.04, s

Table 2: 1H and 13C NMR data of the aglycone and the sugar portion of compound I (600 Mz,  ppm, in CD3OD)
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In the HMQC spectrum (Supplementary Data), these anomeric protons correlated to their anomeric carbons at 
105.4, 101.9 and 101.6, respectively (Table 2). Complete assignments of 1H and 13C NMR signals of the sugar
portion were accomplished by HMQC and HMBC (Supplementary Data) experiments which allowed us to
unambiguously assign all proton sugar signals and to identify one glucuronopyranosyl unit ( 4.48) (H1‘), one
-galactopyranosyl unit ( 4.90) (H-1“) and one -rhamnopyranosyl unit (5.22) (H-1“‘) (Abbas and Zayed,
2005; and Ma et al., 2009). In addition, the -configuration of glucuronic acid, galactose (J = 7.5Hz) and -
rhamnose (J = 1.2 Hz) were confirmed from the coupling constants of their anomeric protons (Mabry et al., 1970).

The sugar moiety of glucuronic acid was further confirmed by the appearance a signal resonating at 177.1
in 13C-NMR spectrum. On the other hand, rhamnose was further confirmed from 1H- and 13C-250 NMR spectra
which showed an additional methyl doublet at  1.3 (J = 6.5 Hz, H-6“‘) and a corresponding 14 methyl signal
at 18 ppm. The glycosidation site on the aglycone of compound I as well as the position of the interglycosidic
linkage were determined by HMBC experiment, which showed long-range correlations between the anomeric
proton signal at  4.9 (H–1gal) and the carbon resonance at   92.2 (C–3) and between the anomeric proton signal
at   4.48 (C–1glca) and the carbon resonance at    77.0 (C–2glca). Moreover, comparison of 13C-NMR data of sugar
moieties of the compound with those reported for sugar moieties of saponins indicated 1  2 linkage between
sugars (Pouchet and Behnke, 1993). This was further confirmed by the ESI-MS/MS spectrum (Figure 6) showed
an ion peak at m/z 965 which was assigned to [M+Na]+, corresponding to a molecular formula C48H78O18
(942.5). The MS/MS of this ion showed a peak at m/z 819 [M+Na-146]+, due to the loss of rhamnose, at m/z 657
[M+Na-146-260 162]+, corresponding to the loss of galactose and at m/z 481 [M+Na-146-162-176]+, due to the
loss of a glucuronopyranosyl unit. The physical, chemical properties and the spectral data of compound I
were in full agreement with those reported for 3-O-[-L- rhamnopyranosyl (1”’– 2”)- -D-galactopyranosyl-
(1”–2’)- -D- glucuronopyranosyl] soyasapogenol B Known as Soyasaponin I (Abbas and Zayed, 2005; and
Takahashi et al., 2008).

Figure 5: ESI-MS/MS spectrum of compound I

From the previous spectral data, compound I was identified as Soyasaponin I. It is worth mentioning that
this is the first report for the isolation of Soyasaponin I from genus Tipuana. Moreover, it should be pointed out
that 20 gm dry weight of the callus and cell aggregates produced 5 mg of Soyasaponin I (25 % yield), however
5.5 Kg of the whole plant (fresh weight) produced almost 5 mg of the same compound, but with less percentage
yield (0.09%). Accordingly, the callus and cell aggregates generated in the present work represent an over
producer cell lines (almost 220 folds) compared with the intact plant.

4. Conclusion
Soyasaponin I is a well-known saponin with promising biological activities including antiviral and cytotoxic
effects, so we strongly recommend the mass production of this compound by tissue culture technology using
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optimized conditions as well as applying some of tissue culture techniques that secure the continuous
biosynthetic capacity of the cell lines over extended period of time. Among the proposed  tissue culture
technological procedures is the immobilization of the over producer cell lines in suitable  solid matrices and
scaling up the process using a large volumes bioreactor.
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