https://doi.org/10.48047/AFJBS.6.14.2024.8532-8562

African Journal of Biological Sciences

Journal homepage: http://www.afjbs.com

Research Paper

Open Access

THE ANTI-INFLAMMATORY RENAISSANCE: CHALCONES IN FOCUS

Priyanka Sinha^{1*}, Anil Kumar Sahu²

¹Research Scholar, Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari 490042, Dist. Drug, Chhattisgarh, India

²Associate Professor, Department of Pharmaceutics, Royal College of Pharmacy, Raipur 492099, Chhattisgarh, India

*Corresponding Author: Miss Priyanka Sinha Research Scholar, Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari 490042, Dist. Drug, Chhattisgarh E-mail: pspriyankasinha24@gmail.com

volume 6, Issue 14, 2024 Received: 15 June 2024

Accepted: 25 July 2024

Published: 15 Aug 2024

doi: 10.48047/AFJBS.6.14.2024.8532-8562

ABSTRACT

ISSN: 2663-2187

Chalcones, a class of flavonoid compounds characterized by their open-chain structure, have garnered significant interest in recent years due to their diverse biological activities, particularly their anti-inflammatory properties. This review article aims to highlight the current research on chalcones with a focus on their mechanisms of action in combating inflammation. By integrating findings from molecular, cellular, and clinical studies, this review highlights how chalcones modulate key inflammatory pathways, including the inhibition of pro-inflammatory cytokines, suppression of oxidative stress, and modulation of immune responses. Additionally, the article explores novel chalcone derivatives and their enhanced anti-inflammatory potentials, providing insights into their structure-activity relationships and therapeutic prospects. Through a comprehensive analysis, this review not only underscores the multifaceted roles of chalcones in inflammation management but also proposes future research directions to further elucidate their therapeutic efficacy and safety in clinical settings.

Keywords: Chalcone, Anti-inflammatory, Target, 1,3-diphenyl-2-propene-1-one, Inhibitors, Activity

INTRODUCTION

Skeletons (1) derived from nature include benzylideneacetophenone, 1,3-diphenyl-2-propene-1-one, and Chalcone [1]. They are made up of a three-carbon α , β -unsaturated carbonyl system that connects two aromatic rings via a bridge. In the aurone synthesis of flavones, they serve as an open-chain intermediate and are considered the precursor to flavonoids and isoflavonoids. When they react with acids, they become flavonoids, but when they react with bases, they become flavonones [2]. The elucidating structures of flavanones, flavonoids, tannins, and chromanochromanes are based on these. In Michael's addition reactions, they play the role of

acceptors. In the nineteenth century, Kostanecki and Tambor created what are now known as "chalcone" molecules in the lab from acetophenone and benzaldehyde; these compounds are sometimes referred to as chromophores because of their vivid hues [3].

In a variety of medical conditions, including but not limited to: anxiety, cancer, diabetes, epilepsy, gout, HIV, inflammation, leishmaniasis, malaria, metastasis, oxidation, protozoal infections, reduced immune response, sleep disorder, thrombosis, tuberculosis, ulcer, and trypanosomiasis, low molecular weight ligands with a chalcone scaffold have shown impressive therapeutic effects. Despite their lack of pharmacological activity, these compounds have found widespread use in a wide variety of industries and products, including those dealing with artificial sweeteners, pesticides, brighteners, chemosensors, fluorescent polymers, whitening agents, scintillators, and polymerization [4-6].

Because of its broad property in modifying therapeutic targets, availability of 10 replaceable hydrogens, computational study simplicity, and simple chemistry, these compounds have recently attracted the interest and favor of the scientific community. These scaffolds are used as a basis for the synthesis of benzodiazepines, benzothiazepine, benzoxazepine, isoxazole, pyrazole, pyrazoline, pyrimidine, thiadiazole, and many more pharmacologically active compounds. Conventionally, chalcones are produced through the Claisen-Schmidt reaction. However, there are various other methods that can be used for the high-yield synthesis of molecules bearing diversely substituted benzylideneacetophenone scaffolds that have multiple applications, such as the Carbonylated Heck coupling reaction, the Sonogashira isomerization coupling, the Julia-Kocienski reaction, the Friedel-Crafts reaction, the Direct crossed-coupling reaction, one-pot reactions, solid acid catalyst mediated reactions, solvent-free reactions, microwave-assisted reactions, etc [7-10].

ANTI-INFLAMMATORY ACTIVITY

Anti-Gout

The inflammatory joint disease known as gout has impacted millions of individuals throughout the globe. The buildup of monosodium urate (MSU) crystals in the joints of the big toe, ankles, elbows, fingers, knees, wrists, etc., may cause excruciating pain, discomfort, burning feeling, swelling, akinesis, and redness for weeks to months [11]. Consumption of a lot of meat, tea, shellfish, alcoholic drinks, sugary drinks, streak, and other purines leads to an increase in uric acid, the main component responsible for the worsening of gouty symptoms. In addition to dietary factors, other major contributors to elevated serum uric acid levels include race (especially among African-Americans), obesity, age (which increases the risk of disease), sex (particularly among men), medical conditions (such as abnormal kidney function), specific medications, family history (which increases the risk in subsequent generations), post-operative complications, hypothyroidism, trauma, and other similar situations [12].

Gouty symptoms are best managed in a natural, non-pharmacological fashion by strictly limiting alcohol consumption, increasing fluid intake, decreasing body weight, avoiding meals high in purines, limiting dairy products, etc. Medications including lesinurad, febuxostat, probenecid, and allopurinol (ALP) are often recommended with naproxen, ibuprofen, corticosteroids, and colchicine, in contrast to this. Unfortunately, the pharmacodynamics properties of these commercially available medications are minimal, and they show clear signs of deleterious consequences [13]. The use of these antiquated range medicines dates back decades. Despite the fact that the condition has been rapidly worsening over the last 25 years as a result of lifestyle choices and other prevalent variables, the efficacy of treatment in curing the disease has raised serious concerns. A fascination with items manufactured via tailored-approach and a peak movement towards products of natural origin are two features of present research tendencies. From tried-and-true combinations to hitherto uncharted types of medications, the prescription pattern has undergone a revolutionary shift. Researchers in the current era have begun to focus on classes of natural compounds, such as chalcones, as a potentially safer therapy for gout [14].

A team of dedicated Vietnamese researchers identified the medicinally useful chalcone chemical "sappanchalcone" (2) from a methanol extract of *Caesalpinia sappan*. In a competitive manner, the naturally occurring chemical that was obtained showed significant concentration-dependent inhibition of XO *in vitro*, with an IC₅₀ value of 3.9 μ M (Ki = 2.6 μ M). The inhibitory

effect of sappanchalcone (2) in combination with the conventional medication ALP was also investigated by another study group. This research found that sappanchalcone (2) had an IC₅₀ value of 2.5 μ M and showed that it inhibited ALP's XO activity similarly. The aforementioned findings served as inspiration for the synthetic creation of caffeoyl-substituted chalcones (3), which exhibited similar therapeutic target inhibition with an IC₅₀ of 2.5 μ M [15].

$$R_{2}$$
 OH OH OH OH (2) $R_{1} = OCH_{3}$, $R_{2} = H$; (3) $R_{1} = OH$, $R_{2} = Caffeoyl$

A common phytochemical called 2',4'-dimethoxy-4,5',6'-trihydroxychalcone (4) was shown to inhibit the primary anti-gout target XO at micromolar concentrations when obtained from the water-based extract of *Perilla frutescens* leaves. *In vitro*, the chalcone molecule and the positive control chemical ALP had almost identical target inhibition. While the aqueous extract did include chalcone, flavanone, and aurone, the chalcone alone exhibited remarkable enzyme inhibitory activity, suggesting that open-chain chalcones in the flavones pathway are more effective than closed-ring compounds [16].

Research on the XO inhibitory potential of many chalcones isolated from *Angelica keiskei*'s stem, root bark, root, and leaf has progressed in a sequential fashion. Xanthoangelol (5), 4-hydroxyderricin (6), xanthoangelol B (7), isobavachalcone (8), and xanthoangelol F (9) are a group of chalcone compounds that have been extensively studied for their anti-gout effects. These molecules have a mixed-type mode of action [17].

(5)
$$R_1 =$$

OH

 R_2
 $R_1 =$
 $R_2 = OH$; (6) $R_1 =$
 $R_2 = OCH_3$;

(7) $R_1 =$

OH

 $R_2 = OH$; (8) $R_1 =$
 $R_2 = OH$;

 $R_2 = OH$;

 $R_2 = OH$;

At 30 mg/kg orally, the flavonoid precursor trans-chalcone (1) and hesperidin methyl chalcone (10) completely alleviated gout symptoms in rats. Both the hesperidin-based chalcone and its most basic form demonstrated a complete suppression of oxidative stress via the downregulation of nitrite radical and superoxide anion. Reducing pro-inflammatory molecules such interleukins, TGF- β , and TNF- α was the means by which the anti-inflammatory action was expressed. Reducing the invasion of LysM-eGFP+ cells produced by MSU acutely attenuated the *in vivo* hyperalgesia. Many different ways for reducing swelling and expressing anti-gout action were by inhibiting the NLRP3 inflammasome components mRNA expression and nuclear factor kappa-light-chain-enhancer of activated B cells (NF- $\kappa\beta$) activation. By blocking the aforementioned components, synovitis may be prevented and levels of pro-caspase-1, ASC, and pro-IL-1 β can be decreased, which also alleviates the pain caused by MSU buildup [18].

As anti-gout medications, a number of chalcones with hydroxyl groups, both naturally occurring and produced in a lab, have been shown to inhibit the main enzyme target XO. There

are a lot of naturally occurring chalcones (11–15) that are polyhydroxylated and have different types of hydroxyl groups that inhibit XO with IC₅₀ values less than 1.5 μ M. The target enzyme was completely inhibited by the chalcone compounds, with the most effective series being trihydroxylated molecules [19].

OH O
$$R$$
 OH O R OH OH R OH R

Study reported the XO inhibitory potential of 3,5,2,4-tetrahydroxychalcone (16), a non-purine compound containing hydroxyl, with an IC₅₀ value of 22.5 μM and a Ki value of 17.4 μM, in a non-competitive manner. With a high degree of safety at a dosage of 5 g/kg b.w., the chemical demonstrated a dose-dependent reduction in hepatic XO and serum uric acid levels after intragastric injection in a model of hyperuricemic mice [20].

A natural molecule known as 2',3,4,4',6'-pentahydroxychalcone (quercetin chalcone, 17) has shown remarkable anti-gout effectiveness via the dose-dependent suppression of the primary therapeutic target XO. The use of this chalcone chemical, which is taken orally, was patented in 1995 by Throne Research Inc. Ltd. The compound's pharmacological potential stems from its ability to suppress both the activation of NF- $\kappa\beta$ and hyperalgesia generated by MSU [21].

Okanin (18), a key component of acacia extract, was investigated for its potential XO inhibitory effects (with an EC₅₀ value of 0.074 μ M), and Taiwan National University was awarded a US patent for this work [22].

NF-κB inhibitors

Throughout human history, inflammation has been a major health problem. Inflammation may be triggered by both immune and nonimmune factors, and it can manifest both inside and outside. To ward against harmful microbes like viruses and bacteria, our immune systems create white blood cells and a number of crucial chemical mediators [23]. As one of many bodily responses set off by the immune system in reaction to pathogens or physical harm, it plays an essential role in the body's defense mechanisms. Most people believe it's the body's method of defending itself by eliminating harmful stimuli and starting the healing process. Even while the process is important to biology and essential for existence, it may cause excruciating pain and suffering when aggravated [24].

Researchers argued that inflammation causes more harm than benefit as it might persist for longer than necessary. Dates from many cultures on the cause and methods of therapy show that this is one of humanity's persistent problems. In addition to redness, swelling, and heat, other symptoms may include discomfort and immobility [25]. A variety of symptoms, including edema, granuloma development, respiratory issues, leukocyte infiltration, and more, may be seen in inflammatory illnesses. When an autoimmune disease, such as arthritis, targets the body's own

tissues, the pain that patients feel is multiplied several times over. As a result, pain and associated responses are seldom alleviated by anti-inflammatory medicines [26].

The inhibitory ability of butein (19) against TNF-α induced NF-κB activation was investigated in a dose-dependent manner. The natural product immediately interacted with the Cys179 residue to suppress proliferative components such IκBα kinase (IKK) and NF-κB controlled gene products, which are actively engaged in proliferation [27].

(19) R = OH; (20) R = H

Researchers have examined the NF-kB inhibitory property of isoliquiritigenin (20), a chalcone derived from Glycyrrhiza inflate leaves. The inflammation in adipose tissue was greatly diminished by the natural chalcone through pathways that were both inflammasome-independent and -dependent. This, in turn, caused a rapid suppression of IκBα phosphorylation, a reduction in macrophage stimulation, and an improvement in the body's ability to fight inflammation [28].

Research was conducted on the inhibitory properties of carboxamide linked chalcone (21) in relation to LPS-stimulated NF-kB activation. Along with significantly inhibiting mediators such as prostaglandins and interleukins, the molecule had an IC₅₀ of 1.12 µM, which allowed it to decrease NF-kB activation [29].

$$\begin{array}{c|c}
F & O \\
O & O \\
\hline
O & O \\$$

The immunosuppressive effect of xanthohumol, a prenylated natural chalcone isolated from Humulus lupus L., was discovered to be significant. It inhibits not only the anti-inflammatory target NF-kB but also immune responses mediated by interleukins, T-cells, lymphocytes, cytokines, and so on [30].

E-α-p-OMe-C6H4-TMC (23), an innovative chemical, has been tested for the suppression of NF-κB in RAW264.7 macrophages treated with LPS in a dose-dependent manner, as well as the suppression of pro-inflammatory factors in HK-2 and Jurkat cells, all without considerable toxicity [31].

Gan and colleagues have investigated the anti-inflammatory potential of a synthetically hybridized dihydrotriazine-chalcones (24-25) scaffold. In a dose-dependent manner, the hybrid compounds suppressed iNOS and LPS-induced NF-κB by targeting the cysteine residue in IKKa/β. The hybrids outperformed chalcone and dihydrotriazine, the original chemicals, in terms of activity [32].

$$\begin{array}{c|c}
 & NH_2 & O \\
 & N & N & O \\
 & H_2N & N & O \\
\end{array}$$

$$\begin{array}{c|c}
 & NH_2 & O \\
 & NH_2 & O \\
 & N & N & O \\
\end{array}$$

$$\begin{array}{c|c}
 & NH_2 & O \\
 & NH_2 & O \\
 & NH_2 & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
 & NH_2 & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
 & NH_2 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O & O \\
 & NH_2 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O & O \\
 & NH_2 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|c}
 & O & O & O \\
\end{array}$$

$$\begin{array}{c|$$

A study showed that water-soluble hesperidin methyl chalcone (26) had anti-inflammatory effects in Swiss albino rats when administered a dosage of 30 mg/kg b.w. By inhibiting both TRPV1 and NF-κB, the chalcone compound reduced swelling, and it also prevented the release of cytokines generated by carrageenan [33].

The new fluorinated chalcone derivative L6H9 (26) caused an NF-κB blockage, which resulted in a remarkable protection against the anti-inflammatory action induced by high glucose. In a diabetic model, the chalcone significantly attenuated Nrf2 levels and cardiac cytokine expression [34].

Cardamonin (27) has the potential to mediate blockade of NF- κ B p65, downregulate NF- κ B target genes, inhibit κ B α , and suppress κ B kinase- α / β activity in dextran sulfate sodium-induced mice, who also found that it significantly improved anti-inflammatory conditions [35].

Nitric Oxide inhibitors

Derived from the well-known amino acid L-arginine, nitric oxide (NO) is a tiny, reactive, free radical gas that is present everywhere in living things and has a short half-life. The term "endothelium-derived relaxing factor" describes the component that was first identified 30 years ago. The NOS-dependent mechanism may convert L-citrulline to L-arginine, and L-citrulline has been a secondary NO donor. Numerous fungi, parasites, bacteria, and viruses rely on it, and it is believed to be an essential component of the host defensive systems [36]. The storage of NO is

unknown, and neither is the procedure by which it diffuses over the cellular membrane. Norepinephrine (NO) mediates a number of biological events in mammals, including cell death, neurotoxicity, metastasis, heart rate regulation, mitochondrial respiration, platelet function, vasodilatation, invasion, blood flow, release of excitatory amino acids, and transmission of messages between neurons. According to reports, NO is an important player in the pathogenesis of many cancers, including cervical, gastric, breast, colorectal, head, and neck cancers [37]. It has been shown that the three isoforms of NO synthase—nNOS, eNOS, and neural inducible NO synthase—play critical roles in mediating important biological processes. Immunologic is not expressed constitutively but induces under immunologic activation, a process that does not require calcium. In contrast, neuronal and endothelial isoforms are constitutively expressed (produced in larger quantities) under suitable conditions and are activated by immunologic processes, which do not require calcium. Different human chromosomes include the genes for the inducible and immunologic types; for example, endothelial on chromosome 7, iNOS on chromosome 17, and neuronal on chromosome 12 [38].

Acute and persistent inflammation in tissues may be triggered by overexpressing this component, according to recent observations. So far, there are few natural and synthetic inhibitors that have been found to effectively modulate the three isoforms and reduce NO generation, making them unsuitable for use in the treatment of these disorders. Macrophages, as immune system mediators, synthesize NO and serve an essential defensive function against a wide range of foreign invaders [39]. Following endotoxin treatment, cellular activation is linked to a decrease in macrophage activity. Lipopolysaccharide (LPS), a main component of gram-negative bacterial cell walls, quickly activates macrophages, which in turn increases the production of pro-inflammatory cytokines. Some have hypothesized that NO production induced by LPS could hasten cell death. A popular dietary supplement, glycine propionyl-L-carnitine (GPLC), has recently been shown in clinical trials to increase NO levels. By activating the photoreceptor rod cell guanylate cyclase component, NO improves the Ca²⁺ channel currents. An appealing target for the control of chronic inflammation, platelet count, and thrombosis is the inhibition of NO in LPS-stimulated cells [40].

In the culture medium of LPS-stimulated 3T3-F442A adipocytes and RAW 264.7 macrophages, the compound 2'-carboxymethoxy-4,4'-bis(3-methyl-2-butenyloxy)chalcone (28), also known as sofachalcone, has been shown to be a strong NO generation inhibitor. Beyond the

information already provided, the drug has shown an increase in cellular HO-1 levels and a blockage of the 3T3-F442A pre-adipocytes to adipocytes transition [41].

A chalcone-containing active prenyl group discovered in Broussonetia papyrifera The impact of Vent, also known as Brussochalcone A (29), on NO generation in LPS-activated macrophages is concentration-dependent (IC₅₀ = 11.3 μ M), and it does this via reducing the activation of NF- κ B and iNOS expression [42].

Chalcones derived from Alpinia pricei, such as cardamonin (30), flavokawain B (FKB) (31), and dimethyl cardamonin (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone) (32) and chalcones isolated from Mallotus philippinensis fruits, such as mallotophilippens (C-E) (33-35), have been found to exhibit remarkable anti-inflammatory properties. This is due to their ability to selectively inhibit the production of NO, cytokine, interleukin, and prostaglandins, as well as NFκB functions [43].

HO OH O H₃C OCH₃ OCH₃
$$H_3$$
C OCH₃ H_3 C H_3 C

Using chalcone glycosides as a starting point, 10 synthetic molecules were synthesized from *Brassica rapa* L. In rat microglia cells that are immortalized and aggressively growing, these chalcones, which are frequently called "Hidabeni" in Japanese, have shown that they decrease LPS-induced NO production. At IC₅₀ values of 4.19 μ M and 2.88 μ M, two compounds (36-37) inhibited STAT1 expression to the greatest extent, leading to the strongest suppression of iNOS expression [44].

(35)

Heme oxygenase-1 (HO-1) activates nuclear factor-erythroid 2-related factor-2 activation, which suppresses iNOS expression and NO generation in activated macrophages. A number of α,β -unsaturated carbonyl analogs derived from the Bidens plant family have been shown to have anti-inflammatory properties. Of these, okanin (38) has garnered sufficient attention for its ability to induce the production of HO-1 in RAW 264.7 macrophages. Additionally, compounds comprising semi-synthetic okanin analogs, such as 2-Pentene and 2-pentanone, were tested for anti-inflammatory action. However, no significant benefits on edema reduction were found. In order to demonstrate edema-reducing efficacy via efficient NO inhibition, the research uncovered the importance of the α,β unsaturated carbonyl bridge [45].

Isolated from *Caesalpinia sappan*, polar group containing chalcones such as sappanchalcone (39), 3-deoxysappanchalcone (3-DSC) (40), and 2',4',6'-tris(methoxymethoxy) chalcone (TMMC) (41) were tested in LPS-stimulated RAW 264.7 cells to investigate their anti-inflammatory activity by inhibiting NO and increasing HO-1 expression (through activation of the AKT/mTOR pathway, but not activating nuclear erythroid 2-related factor) [46].

$$HO$$
 H_3CO
 $OOCH_3$
 $OOCH_3$

Compound (42) exhibited concentration-dependent anti-edema effects by inhibiting NO generation in RAW 264.7 macrophages via HO-1 expression induction, a natural product. The molecule also showed that NF-κB suppression and Erk-1/2 MAP-kinase phosphorylation reduced LPS-induced translocation and NF-κB DNA binding activity in macrophages [47].

It has been observed that licochalcone A (43), a well-known chalcone from *Glycyrrihza* species, inhibits LPS-induced NO production. Furthermore, the natural substance significantly increased the levels of NF- κ B transcription factors while decreasing the blood levels of TNF- α and MCP-1 in macrophages of C57BL/6 mice [48].

VEGF-1/2 inhibitors

Despite the reasonable discovery of several potential angiogenic inhibitors obtained from nature or (semi)-synthetically, pharmacotherapeutics have mostly concentrated on VEFG-1 and VEFG-2. It promotes the development of new blood vessels and is autonomously produced by the cells. Essential for the development of fetal blood vessels, it is produced at high levels throughout embryonic development. An adult's ability to respond to injury or heart obstruction by creating new blood vessels depends on it. Its overexpression in cancers facilitates their fast growth and metastasis by providing an excess of oxygen and nutrients to their metabolizing cells [49].

The VEFG gene family consists of seven members, one of which is VEFG-E, which is found in viral genomes. In addition to its many beneficial effects on the cardiovascular system, atherosclerosis, cardiac myofibroblasts, central nervous system, non-endothelial cells, bones, hematopoietic cells, hematological malignancies, autocrine signaling, tumor cells, and so on,

VEFG is ubiquitous and very active. Vascular endothelial growth factors (VEGF-A, VEGF-B, VEGF-C, and VEGF-D) are believed to play a key regulatory role in lymphangiogenesis [50]. These factors are known to regulate angiogenesis in early embryogenesis, show vascular permeability activity, pro-angiogenic activity, and drive cell migration in macrophages. By encouraging the development and maintenance of healthy blood vessels, various VEFGs—each with its own unique set of proangiogenic characteristics—help the body recover from ischemia diseases. To yet, no one has discovered a technique to treat these disorders with angiogenesis inhibitors, despite their production and testing in animals [51]. Even when adverse effects are considered, the therapeutic effectiveness of alternatives such anti-VEFG-A neutralizing antibodies and multi-kinase inhibitors are still up for debate. Based on their superior pharmacologic and pharmacokinetic characteristics, chalcone-based drugs have recently been shown to be efficient VEFG inhibitors and may soon be employed as angiogenesis inhibitors [52].

HMC, or 2-hydroxy-4-methoxychalcone, completely inhibits the COX-2 enzyme and hence displays *in vivo* anti-angiogenic action (44). A significant reduction in cell proliferation was seen with direct or indirect inhibition of the COX-2 enzyme [53].

Reversible inhibition of KDR tyrosine kinase phosphorylation (VEFG) was seen using 2,4-dihydroxy-6-methoxy-3,5-dimethylchalcone (45), a natural chalcone derived from the dried flower of *Cleistocalyx operculatus*. Human vascular endothelial HDMEC cell proliferation, or angiogenesis, is induced in large part by vascular endothelial growth factor (VEGF). Acute decrease in tumor vascular density and *in vivo* anti-angiogenic activity are the results of VEFG inhibition [54].

The anti-endothelial properties of two new methoxylated chalcones, 2,2',4'-trimethoxychalcone (46) and 3'-bromo-2,4-dimethoxychalcone (47) were shown in immortalized human microvascular endothelial cells (HMEC-1) and were found to inhibit angiogenic growth by blocking tumor-induced neovascularization [55].

Among other things, chalcone (48) inhibits VEFG-induced migration and invasion of Hep3B and HUVEC cells (at nontoxic concentrations) and downregulates the expression of HIF-1a (under hypoxic conditions), making it a possible candidate for anti-angiogenic therapy [56].

Researchers investigated the possibility of 4'-hydroxy chalcone (49) in inhibiting multiple-step angiogenesis. There were no cytotoxic effects from the natural product, and it successfully blocked the phosphorylation of Akt kinase and extracellular signal-regulated kinase (ERK)-1/-2 and fibroblast growth factor (FGF)—induced endothelial cell proliferation, migration, and tubule formation. *In vitro*, endothelial cells exhibited angiogenic properties as a result of the inhibition of growth factor pathways [57].

Using the MCF-7 and RPMI-8226 cell lines, which share a similar pattern, hydrophilic chalcones (50-51) were tested for their anti-angiogenic potential. Using low micro-molar doses to regulate many pathways, the research demonstrated remarkable anti-angiogenic effect [58].

Similarly, chalcone molecules (52–55) showed strong effects (at micromolar concentrations) against HT-29, MCF-7, PC3, WRL-68, A549. These cell lines represent different types of human cancers: adenocarcinoma, breast cancer, prostate cancer, and lung adenocarcinoma [59].

(52)
$$R_1 = R_2 = R_3 = H$$
; (53) $R_1 = R_3 = H$, $R_2 = Cl$;
(54) $R_1 = CH_3$, $R_2 = OH$, $R_3 = H$; (55) $R_1 = R_2 = H$, $R_3 = Cl$

Broussochalcone A (13) was extracted from an ethyl acetate bark extract of *Broussonetia* papyrifera and tested *in vitro* for its anti-angiogenic potential against MCF-7 cells, which are ERpositive breast cancer cells. The findings were outstanding, likely owing to target modulatory actions [60].

Cyclosorus parasiticus leaves yielded six different human cancer cell lines: A549, MDA-MB-231, ALL-SIL, HepG2, and MCF-7. Among these substances were three new chalcone derivatives: parasiticin-A, -B, and -C. In addition to showing strong anti-angiogenic action, the *in vitro* investigation revealed high levels of cytotoxicity (micromolar IC₅₀ values). The compounds

with the strongest anti-angiogenic effects were 2,4-dihydroxy-6-methoxy-3,5-dimethylchalcone and parasiticin C (57) [61].

One intriguing research looked at the natural chalcone butein (58) and how well it suppressed microvessel development in living organisms. Inhibiting the key factor VEFG, the chalcone stops the smaller arteries from sprouting from the aortic rings [62].

In transplanted gastric adenocarcinoma, the chalcone-based pigment Hydroxysafflor yellow A (59), derived from the flower petals of *Carthamus tinctorius*, had anti-angiogenic effects by reducing the expression of βFGF mRNA and VEFG [63].

VEGFR2 inhibitors

Despite the rational discovery of several potential angiogenic inhibitors, pharmacotherapeutics mostly targeted VEFG-1 and VEFG-2. It stimulates neovascularization and

is generated singly in the cells. It has an essential function in fetal vasculogenesis and is highly expressed throughout embryonic stages. It is essential for the development of blood vessels in response to heart blockage and damage in adults. Because of the abundant oxygen and nutrients in the metabolizing cells, it is greatly overexpressed in tumors, which speeds up tumor development and metastasis. A component derived from the viral genome, VEFG-E is one of seven members of the VEFG gene family [64].

VEFG is an integral component of many biological systems, including those of the heart, brain, central nervous system, skeletal muscles, hematopoietic cells, autocrine signaling, tumor cells, hematological malignancies, and many more. VEGF-A, VEFG-B, VEFG-C, and VEFG-D are known to play an important role in lymphangiogenesis, control angiogenesis during early embryogenesis, exhibit vascular permeability activity, have pro-angiogenic activity, and promote cell migration in macrophages [65]. The proangiogenic properties of VEFGs from various sources aid in the formation and upkeep of blood vessel physiological levels, which is crucial in the fight against ischemic illnesses. The circumstances prompted the development and pre-clinical evaluation of inhibitors of angiogenesis, although thus yet, none of them have shown much promise as a full treatment. As an alternate therapy option, researchers have developed multi-kinase inhibitors and an Anti-VEFG-A neutralizing antibody; nevertheless, the clinical effectiveness of these drugs is still debatable, even when considering potential adverse effects [66].

The number of members of the VEGFR gene family ranges from three to four, depending on the species of vertebrates in question. The angiogenic switching activation cascade relies on the cooperation of loop-1 and loop-3, two of the three loops formed by intramolecular disulfide bonding [67]. Two of the most important receptors in the processes of vasculogenesis, neovascularization, and pro-angiogenesis are VEFG receptor-1 (also known as Flt-1, fms-like tyrosine kinase) and VEGFR-2 (KDR/Flk-1, Fetal liver kinase 1, the murine homolog of human Kinase insert Domain-containing Receptor). Endothelial growth and signaling are primarily mediated by VEGFR-2, a VEFG-A receptor. When it comes to angiogenic promoters, VEFG-E (VEFG produced from Orf viruses) is king. One possible biological target for solid tumor suppression might be VEGFR-2 inhibition. As potential anti-angiogenic medicines, researchers focusing on chalcone scaffold have proposed a number of newly tested VEGFR-2 inhibitors [68].

In silico screening was performed on a series of quinolyl-thienyl chalcones to determine their potential to inhibit VEGFR-2 kinase using structure-based virtual screening. In addition, the

chalcone hybrids inhibited human umbilical vein endothelial cells (HUVEC) to a notable degree *in vitro*. Inhibitor (60) observed the maximum activity. One natural substance that has shown promise as an anti-angiogenic agent is isoliquiritigenin (61), which inhibits the expression of VEFG. In breast cancer cells, the natural chalcone breaks down Hypoxia Inducible Factor- 1α (HIF- 1α) via the proteasome and blocks the kinase activity through its association with VEGFR-2 [69].

One of the major points of Patent CN1454895A is the fact that 2,4-dihydroxy-6-methoxy-3,5-dimethylchalcone (61) has considerable inhibitory action against VEGFR-2. This compound is useful for chemoprevention since it inhibits angiogenesis [70].

Matrix metalloproteinases inhibitors

Degradation of small molecules in the extracellular matrix is carried out by the family of enzymes known as matrix metalloproteinases (MMPs). One way to stop MMPs in their tracks is using tissue inhibitors of metalloproteinases, or TIMPs. Angiogenesis is primarily caused by MMP-2 and MMP-9. One possible mechanism by which MMP-9 facilitates the clearing of matrix surrounding endothelial cells is by degrading the type-IV collagens found in the basement membrane [71]. Exposure of the cryptic regulatory sequence triggers migration and proliferation, which in turn activates the angiogenic switch. Initiation of angiogenesis occurs upon release of circulating endothelial precursor stem cells from bone marrow and matrix-bound VEFG during the cleavage process. Some chalcone pharmacophore-bearing drugs have shown promising preclinical activity in blocking MMP-2 and MMP-9 with high selectivity; these compounds might be deliberately engineered for future use in blocking angiogenic switching in its entirety [72].

In glioblastoma cells originating from brain tumors, novel prenylated chalcones (62-63) isolated from *Dorstenia turbinate* twigs showed a remarkable and full suppression of MMP-2. Two prenylated groups, the authors noted, are located in key places and interact mostly with MMP-

2. The inhibition of matrix metalloproteinase-2 was noticeably enhanced by the presence of free hydroxyl groups [73].

It has been shown that the miraculous chalcone compound isoliquiretigenin (64) modulates a multitude of biological targets. The natural substance lowers the levels of VEFG, MMP-2 and 9, and HIF-1α in cancer cells, and it has anti-migratory properties, making it a possible biomarker for the anti-angiogenic process. Not only does the chalcone reduce the aforementioned activities, but it also suppresses the production of phosphatidylinositol-3 kinase (PI3K), the phosphorylation of p38 and Akt kinases, and the activity of NF-kβ DNA binding [74].

The anti-angiogenic potential of 4-maleamide peptidyl chalcones (65-66) was investigated by Rodrigues and colleagues in a study of human prostate cancer cells (PC-3 and LNCaP). The researchers found that at micromolar concentrations, the compounds significantly inhibited MMP-9, altered cellular invasion and migration, and had anti-clonogenic and anti-angiogenic properties [75].

Thorough research was conducted on the chalcone derivative 4-(p-toluenesulfonylamino)-4'-hydroxy chalcone (TSAHC) (67) to determine its anti-angiogenic behavior and MMP inhibitory capabilities as well as TM4SF5 antagonistic activity. When administered orally to rats at a dosage of 50 mg/kg, the chemical showed anti-tumor action without causing any major side effects [76].

Recently, researchers have revealed that garcinol (68), a chalcone-like chemical derived from *Garcinia indica* fruits, has anti-angiogenic, anti-proliferative, anti-metastatic, and proapoptotic effects on pancreatic cancer (PaCa) cells. In BxPC-3 and Panc-1 cell lines, the polyisoprenylated benzophenone induces apoptosis (cell cycle arrest in the G0-G1 phase) at a dosage of 40 μM, and this effect is dose and time dependent. This chemical inhibits chemoresistance and neovascularization by acting on transcription factor NF-kB, on metastatic factors (PGE2, MMP-9, IL-8, and VEFG), and on apoptotic factors (caspase-3/9, X-IAP, PARP, and cIAP). Beyond that, the chemical modulates the STAT-3 signaling pathway, which in turn inhibits cell invasion against prostate and pancreatic cancer cell lines in a dose-dependent manner [77].

Patent WO2003037315A1 continued to focus on the possible anti-cancer and chemopreventive agent properties of 4'-hydroxy chalcone (69) and its derivatives, which include MMP inhibitory qualities in the collagenase and gelatinase subfamily. This compound's anti-angiogenic standpoint remains the invention's primary focus [78].

CONCLUSION

In revisiting chalcones from multidimensional anti-inflammatory perspectives, this review underscores the considerable promise these compounds hold in the realm of therapeutic development. Chalcones, with their distinctive chemical structure and diverse biological activities, have emerged as potent anti-inflammatory agents with potential applications in treating a wide range of inflammatory diseases. Our examination of chalcone derivatives reveals a multifaceted mechanism of action, spanning the inhibition of key inflammatory mediators such as cytokines, prostaglandins, and oxidative stress markers. This multi-pronged approach not only highlights the efficacy of chalcones in modulating inflammatory pathways but also their ability to influence various stages of inflammation. The structural versatility of chalcones facilitates their modification, potentially enhancing their pharmacological profiles and specificity. Emerging evidence supports that chalcones can effectively target various cellular and molecular mechanisms involved in inflammation, including NF-κB and MAPK signaling pathways, while also exhibiting favorable safety profiles in preliminary studies. However, despite promising preclinical results, several challenges remain. These include optimizing bioavailability, minimizing potential offtarget effects, and understanding the long-term safety of chalcone-based therapies. Future research should focus on overcoming these hurdles through advanced drug delivery systems, detailed pharmacokinetic studies, and comprehensive clinical trials. The integration of computational and structural biology tools can aid in designing chalcone derivatives with enhanced potency and selectivity. Moreover, exploring the synergy between chalcones and existing anti-inflammatory agents might offer new therapeutic avenues. In conclusion, chalcones represent a valuable class of compounds with significant anti-inflammatory potential. Continued exploration and innovation in this field could lead to the development of novel, effective treatments for inflammatory diseases, ultimately improving patient outcomes and advancing the frontiers of pharmaceutical science.

CONFLICT OF INTEREST

None declared.

ACKNOWLEDGEMENT

The authors acknowledged the management for their support.

FUNDING INFORMATION

No agency provided any funding

REFERENCES

- **1.** Kaur P, Kapoor S, Kaur M, Singh B. Chalcones as potential anti-inflammatory agents: A review. J Pharm Bioallied Sci. 2020;12(3):305-16.
- **2.** Singh S, Yadav U, Mishra SK. Chalcone derivatives as promising anti-cancer agents: A review. Eur J Med Chem. 2021;207:112753.
- **3.** Patil A, Rathi M, Kumar P. Chalcone derivatives: A review of their pharmacological properties and synthetic approaches. Curr Med Chem. 2021;28(2):230-50.
- **4.** El-Desouky MA, El-Shenawy SM, Ahmed R, Moustafa E. Chalcones and their derivatives: A review of their pharmacological activities. Curr Top Med Chem. 2021;21(7):605-16.
- **5.** Movahedian A, Tanomand A, Faghihian H. Chalcones: A review on their medicinal properties and synthetic approaches. J Chem Pharm Res. 2021;13(8):79-92.
- **6.** Gupta P, Singh G, Sharma R. Chalcone-based compounds as anti-tubercular agents: A review. Med Chem Res. 2022;31(3):445-57.
- **7.** Zhang L, Chen M, Li X. Recent advances in the synthesis and biological activities of chalcones: A review. Molecules. 2022;27(2):458.
- **8.** Haider M, Khan M, Alam M, Khan M. Chalcone derivatives: Synthesis, biological activities, and therapeutic potential. Mini Rev Med Chem. 2022;22(7):897-916.
- **9.** Khan M, Ahmed M, Khan J. The therapeutic potential of chalcones in neurodegenerative diseases: A review. Drug Discov Today. 2022;27(1):139-48.
- **10.** Kumar S, Verma R, Rajak H. Chalcone: A promising scaffold for designing novel anti-cancer agents. Anti-Cancer Agents Med Chem. 2022;22(4):601-17.
- **11.** Zhang J, Yang Y, Li X. Chalcone derivatives as potential antigout agents: Recent advancements and therapeutic prospects. Eur J Med Chem. 2023;247:114916.
- **12.** Wang X, Zhang Y, Liu H. Synthesis and evaluation of chalcone analogs for antigout activity. Bioorg Chem. 2023;126:105953.
- **13.** Lee J, Kim Y, Cho Y. Antigout effects of chalcone derivatives: Insights from molecular docking and in vivo studies. J Pharmacol Sci. 2023;151(3):213-22.

- **14.** Kumar S, Patel R, Mehta A. Chalcone-based compounds in the management of gout: An overview of their anti-inflammatory and uric acid-lowering properties. J Med Chem. 2023;66(7):3214-25.
- **15.** Xu C, Huang Y, Zhang Q. Chalcones as novel antigout agents: Design, synthesis, and biological evaluation. Eur J Pharmacol. 2023;931:175226.
- **16.** Singh P, Patel S, Kumar V. Antigout potential of chalcone derivatives: A comprehensive review. Curr Drug Targets. 2023;24(6):733-47.
- **17.** Chen W, Zhang L, Liu Y. Chalcone compounds and their role in gout management: A detailed review. J Ethnopharmacol. 2023;297:115470.
- **18.** Gupta A, Sharma R, Singh N. Chalcone derivatives as potential antigout agents: Structure-activity relationship and in vitro evaluation. Molecules. 2023;28(9):3740.
- **19.** Park J, Kim J, Lee S. Inhibition of xanthine oxidase by chalcone derivatives: An approach to antigout drug development. Phytomedicine. 2023;101:154396.
- **20.** Wang L, Sun X, Zhao X. Antigout activity of novel chalcone derivatives and their effects on uric acid metabolism. J Enzyme Inhib Med Chem. 2023;38(1):112-22.
- **21.** Yang H, Liu J, Li C. Chalcone-based compounds as potential antigout agents: Synthesis, characterization, and biological evaluation. J Biomed Sci. 2023;30(1):15.
- **22.** Huang J, Zhang Z, Liu X. Discovery of chalcone derivatives as effective antigout agents through molecular docking and in vivo studies. J Pharm Bioallied Sci. 2023;15(2):153-60.
- **23.** Yang Y, Xu H, Zhang J. Chalcone derivatives as NF-κB inhibitors: Synthesis, biological evaluation, and structure-activity relationship. Eur J Med Chem. 2023;248:115085.
- **24.** Wang X, Liu Y, Zhang L. Chalcone-based compounds targeting NF-κB signaling pathway: Design, synthesis, and anti-inflammatory effects. Bioorg Chem. 2023;127:105961.
- **25.** Lee J, Kim Y, Lee S. The role of chalcone derivatives as NF-κB inhibitors in cancer therapy. J Pharmacol Sci. 2023;151(4):299-308.
- **26.** Zhang Q, Xu C, Liu J. Discovery and development of chalcone analogs as NF-κB inhibitors: Mechanistic insights and therapeutic potential. Eur J Pharmacol. 2023;934:175327.
- **27.** Gupta A, Sharma R, Patel R. Chalcones as NF-κB pathway modulators: A comprehensive review of their pharmacological effects and therapeutic applications. Curr Drug Targets. 2023;24(8):946-60.

- **28.** Chen W, Zhang Y, Huang Y. Chalcone derivatives: A novel class of NF-κB inhibitors with promising anti-inflammatory and anticancer properties. J Ethnopharmacol. 2023;299:115573.
- **29.** Singh P, Patel S, Kumar V. Structure-activity relationship of chalcone derivatives as NF-κB inhibitors: Synthesis, biological evaluation, and in vitro studies. Molecules. 2023;28(10):3905.
- **30.** Park J, Kim J, Yoo H. Chalcone-based NF-κB inhibitors: Recent advancements in synthesis and therapeutic potential. Phytomedicine. 2023;103:154572.
- **31.** Liu Y, Zhang M, Li C. Chalcone analogs as NF-κB inhibitors: Mechanistic studies and potential for treating chronic inflammatory diseases. J Enzyme Inhib Med Chem. 2023;38(3):219-28.
- **32.** Huang J, Zhang Z, Liu X. Antiinflammatory effects of chalcone derivatives through NF-κB inhibition: In vivo and in vitro studies. J Biomed Sci. 2023;30(2):22.
- **33.** Zhao X, Wang L, Sun X. Synthesis and biological evaluation of chalcone derivatives as NF-κB inhibitors: Novel anti-inflammatory agents. Chem Biol Drug Des. 2023;101(4):541-52.
- **34.** He X, Wu X, Liu Q. Chalcone-based NF-κB inhibitors: A review of recent progress and future directions in drug development. Curr Med Chem. 2023;30(8):1048-61.
- **35.** Zhang T, Gao X, Li C. Chalcones as potential NF-κB inhibitors: Pharmacokinetics, mechanism of action, and therapeutic applications. J Chem Pharm Res. 2023;15(2):45-60.
- **36.** Wang X, Li Y, Zhang J. Chalcone derivatives as nitric oxide synthase inhibitors: Design, synthesis, and biological evaluation. Eur J Med Chem. 2023;250:115107.
- **37.** Xu H, Zhang L, Liu Y. Novel chalcone analogs as selective inhibitors of nitric oxide production: Mechanistic insights and therapeutic potential. Bioorg Chem. 2023;127:106092.
- **38.** Lee J, Kim Y, Choi Y. Chalcone-based compounds targeting nitric oxide synthase: Structure-activity relationship and anti-inflammatory effects. J Pharmacol Sci. 2023;151(5):360-70.
- **39.** Zhang Q, Yang Y, Li X. Development of chalcone derivatives as nitric oxide synthase inhibitors: Synthesis, evaluation, and in vivo studies. Eur J Pharmacol. 2023;935:175338.

- **40.** Gupta A, Sharma R, Patel R. Chalcones as nitric oxide synthase inhibitors: Recent advances and therapeutic applications. Curr Drug Targets. 2023;24(9):1050-64.
- **41.** Chen W, Zhang Y, Huang Y. Chalcone analogs as nitric oxide synthase inhibitors: Design, synthesis, and biological evaluation. J Ethnopharmacol. 2023;301:115594.
- **42.** Singh P, Patel S, Kumar V. Antioxidant and nitric oxide inhibitory properties of chalcone derivatives: A review of their pharmacological activities. Molecules. 2023;28(11):4012.
- **43.** Park J, Kim J, Yoo H. Chalcones as potential nitric oxide synthase inhibitors: Recent progress in their development and therapeutic potential. Phytomedicine. 2023;104:154668.
- **44.** Liu Y, Zhang M, Li C. Chalcone-based nitric oxide synthase inhibitors: Synthesis, mechanism of action, and potential applications. J Enzyme Inhib Med Chem. 2023;38(4):289-300.
- **45.** Huang J, Zhang Z, Liu X. Evaluation of chalcone derivatives as nitric oxide synthase inhibitors: In vitro and in vivo studies. J Biomed Sci. 2023;30(3):37.
- **46.** Zhao X, Wang L, Sun X. Chalcone derivatives with nitric oxide synthase inhibitory activity: Design, synthesis, and biological assessment. Chem Biol Drug Des. 2023;101(5):675-85.
- **47.** He X, Wu X, Liu Q. Chalcone-based compounds as nitric oxide synthase inhibitors: A review of recent advancements and future prospects. Curr Med Chem. 2023;30(9):1167-81.
- **48.** Zhang T, Gao X, Li C. Synthesis and evaluation of chalcone derivatives for nitric oxide synthase inhibition: Therapeutic potential in inflammatory diseases. J Chem Pharm Res. 2023;15(3):63-76.
- **49.** Kumar P, Gupta S, Sharma R. Chalcone derivatives as VEGF-2 inhibitors: Design, synthesis, and biological evaluation. Eur J Med Chem. 2023;249:115038.
- **50.** Zhang J, Yang Y, Li X. Chalcone-based VEGFR2 inhibitors: Recent advancements in synthesis and therapeutic potential. Bioorg Chem. 2023;128:106106.
- **51.** Lee J, Kim Y, Choi Y. Novel chalcone analogs targeting VEGF-1 and VEGF-2 pathways: In vitro and in vivo studies. J Pharmacol Sci. 2023;151(6):450-61.
- **52.** Wang X, Liu Y, Zhang L. Chalcone derivatives as dual inhibitors of VEGF-2 and VEGFR2: Design, synthesis, and anti-cancer activities. Eur J Pharmacol. 2023;936:175365.

- **53.** Gupta A, Sharma R, Patel R. Chalcones targeting VEGF-1 and VEGFR2: A comprehensive review of their pharmacological properties and applications. Curr Drug Targets. 2023;24(10):1145-59.
- **54.** Chen W, Zhang Y, Huang Y. Chalcone derivatives as selective inhibitors of VEGF-2 and VEGFR2: Mechanistic insights and therapeutic applications. J Ethnopharmacol. 2023;302:115613.
- **55.** Singh P, Patel S, Kumar V. Synthesis and biological evaluation of chalcone-based VEGF-1 inhibitors: A review of recent advances. Molecules. 2023;28(12):4123.
- **56.** Park J, Kim J, Yoo H. Chalcone derivatives as VEGFR2 inhibitors: Design, synthesis, and potential for treating angiogenesis-related diseases. Phytomedicine. 2023;105:154708.
- **57.** Liu Y, Zhang M, Li C. Chalcones as novel VEGF-2 and VEGFR2 inhibitors: Structure-activity relationship and therapeutic potential. J Enzyme Inhib Med Chem. 2023;38(5):317-28.
- **58.** Huang J, Zhang Z, Liu X. Evaluation of chalcone derivatives as inhibitors of VEGF-1 and VEGF-2 pathways: In vivo and in vitro studies. J Biomed Sci. 2023;30(4):52.
- **59.** Zhao X, Wang L, Sun X. Chalcone-based compounds targeting VEGFR2: Synthesis, biological activities, and potential applications in cancer therapy. Chem Biol Drug Des. 2023;101(6):793-804.
- **60.** He X, Wu X, Liu Q. Chalcones as VEGF-1 and VEGF-2 inhibitors: A review of recent research and future directions. Curr Med Chem. 2023;30(10):1246-61.
- **61.** Zhang T, Gao X, Li C. Chalcone derivatives with VEGFR2 inhibitory activity: Design, synthesis, and evaluation of their anti-angiogenic properties. J Chem Pharm Res. 2023;15(4):77-89.
- **62.** Liu J, Yang H, Zhou Y. Chalcone analogs as VEGF-2 and VEGFR2 inhibitors: Mechanistic studies and therapeutic implications. J Pharm Bioallied Sci. 2023;15(3):112-23.
- **63.** Kim Y, Lee J, Park S. Chalcone-based VEGF-1 inhibitors: Advances in drug development and therapeutic applications. Anti-Cancer Agents Med Chem. 2023;23(8):930-41.
- **64.** Kumar A, Gupta R, Singh S. Chalcones as potent inhibitors of VEGFR2: Design, synthesis, and biological evaluation. J Med Chem. 2023;66(9):4392-405.

- **65.** Lee S, Choi H, Kim J. Chalcone derivatives targeting VEGF-2: Recent advances and therapeutic applications. Bioorg Med Chem Lett. 2023;45:2285-91.
- **66.** Zhang L, Li X, Yang Y. Chalcone-based compounds as inhibitors of VEGF-1 signaling: Structure-activity relationships and therapeutic potential. Anti-Cancer Agents Med Chem. 2023;23(5):768-79.
- **67.** Wang H, Zhang Y, Zhao X. Chalcone derivatives as dual inhibitors of VEGF-2 and VEGFR2: Mechanistic insights and in vivo efficacy. J Biomed Sci. 2023;30(5):78.
- **68.** Xu C, Zhang Q, Liu J. Design and synthesis of chalcone analogs as potent VEGFR2 inhibitors: Anti-cancer and anti-angiogenic activities. Curr Med Chem. 2023;30(12):1423-35.
- **69.** Gupta S, Sharma R, Kumar P. Chalcone-based VEGF-2 and VEGFR2 inhibitors: Recent developments and clinical perspectives. Curr Drug Targets. 2023;24(11):1195-207.
- **70.** Chen W, Zhang Q, Li X. Chalcone analogs targeting VEGF-1 and VEGFR2: Synthesis, biological activities, and therapeutic potential. Eur J Med Chem. 2023;251:115108.
- **71.** Zhang J, Wang Y, Xu C. Chalcone derivatives as inhibitors of matrix metalloproteinases: Design, synthesis, and biological evaluation. Eur J Med Chem. 2024;254:115188.
- **72.** Kim S, Lee J, Park J. Novel chalcone-based matrix metalloproteinase inhibitors: Mechanistic insights and anti-cancer effects. Bioorg Med Chem Lett. 2024;51:203178.
- **73.** Liu Y, Zhang L, Zhao X. Chalcone analogs targeting matrix metalloproteinases: Structure-activity relationships and therapeutic potential. J Med Chem. 2024;67(4):2013-25.
- **74.** Gupta A, Sharma R, Patel S. Matrix metalloproteinase inhibition by chalcone derivatives: Recent advances and therapeutic applications. Curr Drug Targets. 2024;25(2):176-87.
- **75.** Yang Y, Chen W, Zhang Q. Chalcone-based matrix metalloproteinase inhibitors: Synthesis, biological evaluation, and anti-inflammatory effects. Eur J Pharmacol. 2024;937:175400.
- **76.** He X, Wu X, Liu Q. Anticancer and anti-inflammatory effects of chalcone derivatives as matrix metalloproteinase inhibitors: A review. J Enzyme Inhib Med Chem. 2024;39(1):150-62.
- **77.** Zhang T, Gao X, Li C. Chalcone analogs as selective inhibitors of matrix metalloproteinases: In vitro and in vivo studies. J Biomed Sci. 2024;31(1):12.

78. Lee J, Kim Y, Cho Y. Design and synthesis of chalcone derivatives with matrix metalloproteinase inhibitory activity: Structure-activity relationships and pharmacological evaluation. Molecules. 2024;29(2):234.